Solve for a
a = -\frac{12}{5} = -2\frac{2}{5} = -2.4
a=-1
Share
Copied to clipboard
50a^{2}+96-10a^{2}=-136a
Subtract 10a^{2} from both sides.
40a^{2}+96=-136a
Combine 50a^{2} and -10a^{2} to get 40a^{2}.
40a^{2}+96+136a=0
Add 136a to both sides.
40a^{2}+136a+96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-136±\sqrt{136^{2}-4\times 40\times 96}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 136 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-136±\sqrt{18496-4\times 40\times 96}}{2\times 40}
Square 136.
a=\frac{-136±\sqrt{18496-160\times 96}}{2\times 40}
Multiply -4 times 40.
a=\frac{-136±\sqrt{18496-15360}}{2\times 40}
Multiply -160 times 96.
a=\frac{-136±\sqrt{3136}}{2\times 40}
Add 18496 to -15360.
a=\frac{-136±56}{2\times 40}
Take the square root of 3136.
a=\frac{-136±56}{80}
Multiply 2 times 40.
a=-\frac{80}{80}
Now solve the equation a=\frac{-136±56}{80} when ± is plus. Add -136 to 56.
a=-1
Divide -80 by 80.
a=-\frac{192}{80}
Now solve the equation a=\frac{-136±56}{80} when ± is minus. Subtract 56 from -136.
a=-\frac{12}{5}
Reduce the fraction \frac{-192}{80} to lowest terms by extracting and canceling out 16.
a=-1 a=-\frac{12}{5}
The equation is now solved.
50a^{2}+96-10a^{2}=-136a
Subtract 10a^{2} from both sides.
40a^{2}+96=-136a
Combine 50a^{2} and -10a^{2} to get 40a^{2}.
40a^{2}+96+136a=0
Add 136a to both sides.
40a^{2}+136a=-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
\frac{40a^{2}+136a}{40}=-\frac{96}{40}
Divide both sides by 40.
a^{2}+\frac{136}{40}a=-\frac{96}{40}
Dividing by 40 undoes the multiplication by 40.
a^{2}+\frac{17}{5}a=-\frac{96}{40}
Reduce the fraction \frac{136}{40} to lowest terms by extracting and canceling out 8.
a^{2}+\frac{17}{5}a=-\frac{12}{5}
Reduce the fraction \frac{-96}{40} to lowest terms by extracting and canceling out 8.
a^{2}+\frac{17}{5}a+\left(\frac{17}{10}\right)^{2}=-\frac{12}{5}+\left(\frac{17}{10}\right)^{2}
Divide \frac{17}{5}, the coefficient of the x term, by 2 to get \frac{17}{10}. Then add the square of \frac{17}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{17}{5}a+\frac{289}{100}=-\frac{12}{5}+\frac{289}{100}
Square \frac{17}{10} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{17}{5}a+\frac{289}{100}=\frac{49}{100}
Add -\frac{12}{5} to \frac{289}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{17}{10}\right)^{2}=\frac{49}{100}
Factor a^{2}+\frac{17}{5}a+\frac{289}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{17}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Take the square root of both sides of the equation.
a+\frac{17}{10}=\frac{7}{10} a+\frac{17}{10}=-\frac{7}{10}
Simplify.
a=-1 a=-\frac{12}{5}
Subtract \frac{17}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}