Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

100=-9.81t^{2}
Multiply 50 and 2 to get 100.
-9.81t^{2}=100
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{100}{-9.81}
Divide both sides by -9.81.
t^{2}=\frac{10000}{-981}
Expand \frac{100}{-9.81} by multiplying both numerator and the denominator by 100.
t^{2}=-\frac{10000}{981}
Fraction \frac{10000}{-981} can be rewritten as -\frac{10000}{981} by extracting the negative sign.
t=\frac{100\sqrt{109}i}{327} t=-\frac{100\sqrt{109}i}{327}
The equation is now solved.
100=-9.81t^{2}
Multiply 50 and 2 to get 100.
-9.81t^{2}=100
Swap sides so that all variable terms are on the left hand side.
-9.81t^{2}-100=0
Subtract 100 from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-9.81\right)\left(-100\right)}}{2\left(-9.81\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9.81 for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-9.81\right)\left(-100\right)}}{2\left(-9.81\right)}
Square 0.
t=\frac{0±\sqrt{39.24\left(-100\right)}}{2\left(-9.81\right)}
Multiply -4 times -9.81.
t=\frac{0±\sqrt{-3924}}{2\left(-9.81\right)}
Multiply 39.24 times -100.
t=\frac{0±6\sqrt{109}i}{2\left(-9.81\right)}
Take the square root of -3924.
t=\frac{0±6\sqrt{109}i}{-19.62}
Multiply 2 times -9.81.
t=-\frac{100\sqrt{109}i}{327}
Now solve the equation t=\frac{0±6\sqrt{109}i}{-19.62} when ± is plus.
t=\frac{100\sqrt{109}i}{327}
Now solve the equation t=\frac{0±6\sqrt{109}i}{-19.62} when ± is minus.
t=-\frac{100\sqrt{109}i}{327} t=\frac{100\sqrt{109}i}{327}
The equation is now solved.