50 ( 1 - 10 \% ) ( 1 + x ) ^ { 2 } = 148
Solve for x
x=\frac{2\sqrt{185}}{15}-1\approx 0.813529401
x=-\frac{2\sqrt{185}}{15}-1\approx -2.813529401
Graph
Share
Copied to clipboard
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=148
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50\times \frac{9}{10}\left(1+x\right)^{2}=148
Subtract \frac{1}{10} from 1 to get \frac{9}{10}.
45\left(1+x\right)^{2}=148
Multiply 50 and \frac{9}{10} to get 45.
45\left(1+2x+x^{2}\right)=148
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
45+90x+45x^{2}=148
Use the distributive property to multiply 45 by 1+2x+x^{2}.
45+90x+45x^{2}-148=0
Subtract 148 from both sides.
-103+90x+45x^{2}=0
Subtract 148 from 45 to get -103.
45x^{2}+90x-103=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\times 45\left(-103\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 90 for b, and -103 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\times 45\left(-103\right)}}{2\times 45}
Square 90.
x=\frac{-90±\sqrt{8100-180\left(-103\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{-90±\sqrt{8100+18540}}{2\times 45}
Multiply -180 times -103.
x=\frac{-90±\sqrt{26640}}{2\times 45}
Add 8100 to 18540.
x=\frac{-90±12\sqrt{185}}{2\times 45}
Take the square root of 26640.
x=\frac{-90±12\sqrt{185}}{90}
Multiply 2 times 45.
x=\frac{12\sqrt{185}-90}{90}
Now solve the equation x=\frac{-90±12\sqrt{185}}{90} when ± is plus. Add -90 to 12\sqrt{185}.
x=\frac{2\sqrt{185}}{15}-1
Divide -90+12\sqrt{185} by 90.
x=\frac{-12\sqrt{185}-90}{90}
Now solve the equation x=\frac{-90±12\sqrt{185}}{90} when ± is minus. Subtract 12\sqrt{185} from -90.
x=-\frac{2\sqrt{185}}{15}-1
Divide -90-12\sqrt{185} by 90.
x=\frac{2\sqrt{185}}{15}-1 x=-\frac{2\sqrt{185}}{15}-1
The equation is now solved.
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=148
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50\times \frac{9}{10}\left(1+x\right)^{2}=148
Subtract \frac{1}{10} from 1 to get \frac{9}{10}.
45\left(1+x\right)^{2}=148
Multiply 50 and \frac{9}{10} to get 45.
45\left(1+2x+x^{2}\right)=148
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
45+90x+45x^{2}=148
Use the distributive property to multiply 45 by 1+2x+x^{2}.
90x+45x^{2}=148-45
Subtract 45 from both sides.
90x+45x^{2}=103
Subtract 45 from 148 to get 103.
45x^{2}+90x=103
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{45x^{2}+90x}{45}=\frac{103}{45}
Divide both sides by 45.
x^{2}+\frac{90}{45}x=\frac{103}{45}
Dividing by 45 undoes the multiplication by 45.
x^{2}+2x=\frac{103}{45}
Divide 90 by 45.
x^{2}+2x+1^{2}=\frac{103}{45}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{103}{45}+1
Square 1.
x^{2}+2x+1=\frac{148}{45}
Add \frac{103}{45} to 1.
\left(x+1\right)^{2}=\frac{148}{45}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{148}{45}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{185}}{15} x+1=-\frac{2\sqrt{185}}{15}
Simplify.
x=\frac{2\sqrt{185}}{15}-1 x=-\frac{2\sqrt{185}}{15}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}