50 ( 1 - 10 \% ) ( 1 + x ) ^ { 2 } = 14.8
Solve for x
x=\frac{\sqrt{74}}{15}-1\approx -0.426511649
x=-\frac{\sqrt{74}}{15}-1\approx -1.573488351
Graph
Share
Copied to clipboard
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=14.8
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50\times \frac{9}{10}\left(1+x\right)^{2}=14.8
Subtract \frac{1}{10} from 1 to get \frac{9}{10}.
45\left(1+x\right)^{2}=14.8
Multiply 50 and \frac{9}{10} to get 45.
45\left(1+2x+x^{2}\right)=14.8
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
45+90x+45x^{2}=14.8
Use the distributive property to multiply 45 by 1+2x+x^{2}.
45+90x+45x^{2}-14.8=0
Subtract 14.8 from both sides.
30.2+90x+45x^{2}=0
Subtract 14.8 from 45 to get 30.2.
45x^{2}+90x+30.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\times 45\times 30.2}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 90 for b, and 30.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\times 45\times 30.2}}{2\times 45}
Square 90.
x=\frac{-90±\sqrt{8100-180\times 30.2}}{2\times 45}
Multiply -4 times 45.
x=\frac{-90±\sqrt{8100-5436}}{2\times 45}
Multiply -180 times 30.2.
x=\frac{-90±\sqrt{2664}}{2\times 45}
Add 8100 to -5436.
x=\frac{-90±6\sqrt{74}}{2\times 45}
Take the square root of 2664.
x=\frac{-90±6\sqrt{74}}{90}
Multiply 2 times 45.
x=\frac{6\sqrt{74}-90}{90}
Now solve the equation x=\frac{-90±6\sqrt{74}}{90} when ± is plus. Add -90 to 6\sqrt{74}.
x=\frac{\sqrt{74}}{15}-1
Divide -90+6\sqrt{74} by 90.
x=\frac{-6\sqrt{74}-90}{90}
Now solve the equation x=\frac{-90±6\sqrt{74}}{90} when ± is minus. Subtract 6\sqrt{74} from -90.
x=-\frac{\sqrt{74}}{15}-1
Divide -90-6\sqrt{74} by 90.
x=\frac{\sqrt{74}}{15}-1 x=-\frac{\sqrt{74}}{15}-1
The equation is now solved.
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=14.8
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
50\times \frac{9}{10}\left(1+x\right)^{2}=14.8
Subtract \frac{1}{10} from 1 to get \frac{9}{10}.
45\left(1+x\right)^{2}=14.8
Multiply 50 and \frac{9}{10} to get 45.
45\left(1+2x+x^{2}\right)=14.8
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
45+90x+45x^{2}=14.8
Use the distributive property to multiply 45 by 1+2x+x^{2}.
90x+45x^{2}=14.8-45
Subtract 45 from both sides.
90x+45x^{2}=-30.2
Subtract 45 from 14.8 to get -30.2.
45x^{2}+90x=-30.2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{45x^{2}+90x}{45}=-\frac{30.2}{45}
Divide both sides by 45.
x^{2}+\frac{90}{45}x=-\frac{30.2}{45}
Dividing by 45 undoes the multiplication by 45.
x^{2}+2x=-\frac{30.2}{45}
Divide 90 by 45.
x^{2}+2x=-\frac{151}{225}
Divide -30.2 by 45.
x^{2}+2x+1^{2}=-\frac{151}{225}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{151}{225}+1
Square 1.
x^{2}+2x+1=\frac{74}{225}
Add -\frac{151}{225} to 1.
\left(x+1\right)^{2}=\frac{74}{225}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{74}{225}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{74}}{15} x+1=-\frac{\sqrt{74}}{15}
Simplify.
x=\frac{\sqrt{74}}{15}-1 x=-\frac{\sqrt{74}}{15}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}