Evaluate
\frac{32876262550}{345025251}\approx 95.286540491
Factor
\frac{2 \cdot 101 \cdot 6510151 \cdot 5 ^ {2}}{3 ^ {5} \cdot 17 ^ {5}} = 95\frac{98863705}{345025251} = 95.2865404914958
Share
Copied to clipboard
50\left(1-\frac{1}{1.1040808032}\right)+\frac{100}{1.02^{5}}
Calculate 1.02 to the power of 5 and get 1.1040808032.
50\left(1-\frac{10000000000}{11040808032}\right)+\frac{100}{1.02^{5}}
Expand \frac{1}{1.1040808032} by multiplying both numerator and the denominator by 10000000000.
50\left(1-\frac{312500000}{345025251}\right)+\frac{100}{1.02^{5}}
Reduce the fraction \frac{10000000000}{11040808032} to lowest terms by extracting and canceling out 32.
50\left(\frac{345025251}{345025251}-\frac{312500000}{345025251}\right)+\frac{100}{1.02^{5}}
Convert 1 to fraction \frac{345025251}{345025251}.
50\times \frac{345025251-312500000}{345025251}+\frac{100}{1.02^{5}}
Since \frac{345025251}{345025251} and \frac{312500000}{345025251} have the same denominator, subtract them by subtracting their numerators.
50\times \frac{32525251}{345025251}+\frac{100}{1.02^{5}}
Subtract 312500000 from 345025251 to get 32525251.
\frac{50\times 32525251}{345025251}+\frac{100}{1.02^{5}}
Express 50\times \frac{32525251}{345025251} as a single fraction.
\frac{1626262550}{345025251}+\frac{100}{1.02^{5}}
Multiply 50 and 32525251 to get 1626262550.
\frac{1626262550}{345025251}+\frac{100}{1.1040808032}
Calculate 1.02 to the power of 5 and get 1.1040808032.
\frac{1626262550}{345025251}+\frac{1000000000000}{11040808032}
Expand \frac{100}{1.1040808032} by multiplying both numerator and the denominator by 10000000000.
\frac{1626262550}{345025251}+\frac{31250000000}{345025251}
Reduce the fraction \frac{1000000000000}{11040808032} to lowest terms by extracting and canceling out 32.
\frac{1626262550+31250000000}{345025251}
Since \frac{1626262550}{345025251} and \frac{31250000000}{345025251} have the same denominator, add them by adding their numerators.
\frac{32876262550}{345025251}
Add 1626262550 and 31250000000 to get 32876262550.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}