Solve for y
y=16
Graph
Share
Copied to clipboard
50\left(-\frac{2}{3}\right)y+50\times \frac{68}{3}+40y=1240
Use the distributive property to multiply 50 by -\frac{2}{3}y+\frac{68}{3}.
\frac{50\left(-2\right)}{3}y+50\times \frac{68}{3}+40y=1240
Express 50\left(-\frac{2}{3}\right) as a single fraction.
\frac{-100}{3}y+50\times \frac{68}{3}+40y=1240
Multiply 50 and -2 to get -100.
-\frac{100}{3}y+50\times \frac{68}{3}+40y=1240
Fraction \frac{-100}{3} can be rewritten as -\frac{100}{3} by extracting the negative sign.
-\frac{100}{3}y+\frac{50\times 68}{3}+40y=1240
Express 50\times \frac{68}{3} as a single fraction.
-\frac{100}{3}y+\frac{3400}{3}+40y=1240
Multiply 50 and 68 to get 3400.
\frac{20}{3}y+\frac{3400}{3}=1240
Combine -\frac{100}{3}y and 40y to get \frac{20}{3}y.
\frac{20}{3}y=1240-\frac{3400}{3}
Subtract \frac{3400}{3} from both sides.
\frac{20}{3}y=\frac{3720}{3}-\frac{3400}{3}
Convert 1240 to fraction \frac{3720}{3}.
\frac{20}{3}y=\frac{3720-3400}{3}
Since \frac{3720}{3} and \frac{3400}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{3}y=\frac{320}{3}
Subtract 3400 from 3720 to get 320.
y=\frac{320}{3}\times \frac{3}{20}
Multiply both sides by \frac{3}{20}, the reciprocal of \frac{20}{3}.
y=\frac{320\times 3}{3\times 20}
Multiply \frac{320}{3} times \frac{3}{20} by multiplying numerator times numerator and denominator times denominator.
y=\frac{320}{20}
Cancel out 3 in both numerator and denominator.
y=16
Divide 320 by 20 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}