Solve for x (complex solution)
x=\frac{\sqrt{15}i}{20}+\frac{1}{4}\approx 0.25+0.193649167i
x=-\frac{\sqrt{15}i}{20}+\frac{1}{4}\approx 0.25-0.193649167i
Graph
Share
Copied to clipboard
50x^{2}-25x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 50\times 5}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -25 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 50\times 5}}{2\times 50}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-200\times 5}}{2\times 50}
Multiply -4 times 50.
x=\frac{-\left(-25\right)±\sqrt{625-1000}}{2\times 50}
Multiply -200 times 5.
x=\frac{-\left(-25\right)±\sqrt{-375}}{2\times 50}
Add 625 to -1000.
x=\frac{-\left(-25\right)±5\sqrt{15}i}{2\times 50}
Take the square root of -375.
x=\frac{25±5\sqrt{15}i}{2\times 50}
The opposite of -25 is 25.
x=\frac{25±5\sqrt{15}i}{100}
Multiply 2 times 50.
x=\frac{25+5\sqrt{15}i}{100}
Now solve the equation x=\frac{25±5\sqrt{15}i}{100} when ± is plus. Add 25 to 5i\sqrt{15}.
x=\frac{\sqrt{15}i}{20}+\frac{1}{4}
Divide 25+5i\sqrt{15} by 100.
x=\frac{-5\sqrt{15}i+25}{100}
Now solve the equation x=\frac{25±5\sqrt{15}i}{100} when ± is minus. Subtract 5i\sqrt{15} from 25.
x=-\frac{\sqrt{15}i}{20}+\frac{1}{4}
Divide 25-5i\sqrt{15} by 100.
x=\frac{\sqrt{15}i}{20}+\frac{1}{4} x=-\frac{\sqrt{15}i}{20}+\frac{1}{4}
The equation is now solved.
50x^{2}-25x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
50x^{2}-25x+5-5=-5
Subtract 5 from both sides of the equation.
50x^{2}-25x=-5
Subtracting 5 from itself leaves 0.
\frac{50x^{2}-25x}{50}=-\frac{5}{50}
Divide both sides by 50.
x^{2}+\left(-\frac{25}{50}\right)x=-\frac{5}{50}
Dividing by 50 undoes the multiplication by 50.
x^{2}-\frac{1}{2}x=-\frac{5}{50}
Reduce the fraction \frac{-25}{50} to lowest terms by extracting and canceling out 25.
x^{2}-\frac{1}{2}x=-\frac{1}{10}
Reduce the fraction \frac{-5}{50} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{10}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{10}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{80}
Add -\frac{1}{10} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{3}{80}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{3}{80}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{15}i}{20} x-\frac{1}{4}=-\frac{\sqrt{15}i}{20}
Simplify.
x=\frac{\sqrt{15}i}{20}+\frac{1}{4} x=-\frac{\sqrt{15}i}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}