Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

50x^{2}+545-85=\frac{80}{100}
Add 45 and 500 to get 545.
50x^{2}+460=\frac{80}{100}
Subtract 85 from 545 to get 460.
50x^{2}+460=\frac{4}{5}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
50x^{2}=\frac{4}{5}-460
Subtract 460 from both sides.
50x^{2}=-\frac{2296}{5}
Subtract 460 from \frac{4}{5} to get -\frac{2296}{5}.
x^{2}=\frac{-\frac{2296}{5}}{50}
Divide both sides by 50.
x^{2}=\frac{-2296}{5\times 50}
Express \frac{-\frac{2296}{5}}{50} as a single fraction.
x^{2}=\frac{-2296}{250}
Multiply 5 and 50 to get 250.
x^{2}=-\frac{1148}{125}
Reduce the fraction \frac{-2296}{250} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
The equation is now solved.
50x^{2}+545-85=\frac{80}{100}
Add 45 and 500 to get 545.
50x^{2}+460=\frac{80}{100}
Subtract 85 from 545 to get 460.
50x^{2}+460=\frac{4}{5}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
50x^{2}+460-\frac{4}{5}=0
Subtract \frac{4}{5} from both sides.
50x^{2}+\frac{2296}{5}=0
Subtract \frac{4}{5} from 460 to get \frac{2296}{5}.
x=\frac{0±\sqrt{0^{2}-4\times 50\times \frac{2296}{5}}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, 0 for b, and \frac{2296}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 50\times \frac{2296}{5}}}{2\times 50}
Square 0.
x=\frac{0±\sqrt{-200\times \frac{2296}{5}}}{2\times 50}
Multiply -4 times 50.
x=\frac{0±\sqrt{-91840}}{2\times 50}
Multiply -200 times \frac{2296}{5}.
x=\frac{0±8\sqrt{1435}i}{2\times 50}
Take the square root of -91840.
x=\frac{0±8\sqrt{1435}i}{100}
Multiply 2 times 50.
x=\frac{2\sqrt{1435}i}{25}
Now solve the equation x=\frac{0±8\sqrt{1435}i}{100} when ± is plus.
x=-\frac{2\sqrt{1435}i}{25}
Now solve the equation x=\frac{0±8\sqrt{1435}i}{100} when ± is minus.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
The equation is now solved.