50 { x }^{ 2 } +45+500-85=80 \%
Solve for x (complex solution)
x=-\frac{2\sqrt{1435}i}{25}\approx -0-3.030511508i
x=\frac{2\sqrt{1435}i}{25}\approx 3.030511508i
Graph
Share
Copied to clipboard
50x^{2}+545-85=\frac{80}{100}
Add 45 and 500 to get 545.
50x^{2}+460=\frac{80}{100}
Subtract 85 from 545 to get 460.
50x^{2}+460=\frac{4}{5}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
50x^{2}=\frac{4}{5}-460
Subtract 460 from both sides.
50x^{2}=-\frac{2296}{5}
Subtract 460 from \frac{4}{5} to get -\frac{2296}{5}.
x^{2}=\frac{-\frac{2296}{5}}{50}
Divide both sides by 50.
x^{2}=\frac{-2296}{5\times 50}
Express \frac{-\frac{2296}{5}}{50} as a single fraction.
x^{2}=\frac{-2296}{250}
Multiply 5 and 50 to get 250.
x^{2}=-\frac{1148}{125}
Reduce the fraction \frac{-2296}{250} to lowest terms by extracting and canceling out 2.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
The equation is now solved.
50x^{2}+545-85=\frac{80}{100}
Add 45 and 500 to get 545.
50x^{2}+460=\frac{80}{100}
Subtract 85 from 545 to get 460.
50x^{2}+460=\frac{4}{5}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
50x^{2}+460-\frac{4}{5}=0
Subtract \frac{4}{5} from both sides.
50x^{2}+\frac{2296}{5}=0
Subtract \frac{4}{5} from 460 to get \frac{2296}{5}.
x=\frac{0±\sqrt{0^{2}-4\times 50\times \frac{2296}{5}}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, 0 for b, and \frac{2296}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 50\times \frac{2296}{5}}}{2\times 50}
Square 0.
x=\frac{0±\sqrt{-200\times \frac{2296}{5}}}{2\times 50}
Multiply -4 times 50.
x=\frac{0±\sqrt{-91840}}{2\times 50}
Multiply -200 times \frac{2296}{5}.
x=\frac{0±8\sqrt{1435}i}{2\times 50}
Take the square root of -91840.
x=\frac{0±8\sqrt{1435}i}{100}
Multiply 2 times 50.
x=\frac{2\sqrt{1435}i}{25}
Now solve the equation x=\frac{0±8\sqrt{1435}i}{100} when ± is plus.
x=-\frac{2\sqrt{1435}i}{25}
Now solve the equation x=\frac{0±8\sqrt{1435}i}{100} when ± is minus.
x=\frac{2\sqrt{1435}i}{25} x=-\frac{2\sqrt{1435}i}{25}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}