Evaluate
\frac{379}{120}\approx 3.158333333
Factor
\frac{379}{2 ^ {3} \cdot 3 \cdot 5} = 3\frac{19}{120} = 3.158333333333333
Share
Copied to clipboard
\frac{250+1}{5}-\frac{47\times 24+1}{24}
Multiply 50 and 5 to get 250.
\frac{251}{5}-\frac{47\times 24+1}{24}
Add 250 and 1 to get 251.
\frac{251}{5}-\frac{1128+1}{24}
Multiply 47 and 24 to get 1128.
\frac{251}{5}-\frac{1129}{24}
Add 1128 and 1 to get 1129.
\frac{6024}{120}-\frac{5645}{120}
Least common multiple of 5 and 24 is 120. Convert \frac{251}{5} and \frac{1129}{24} to fractions with denominator 120.
\frac{6024-5645}{120}
Since \frac{6024}{120} and \frac{5645}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{379}{120}
Subtract 5645 from 6024 to get 379.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}