Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}+216x-672=50
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+216x-672-50=0
Subtract 50 from both sides.
-16x^{2}+216x-722=0
Subtract 50 from -672 to get -722.
x=\frac{-216±\sqrt{216^{2}-4\left(-16\right)\left(-722\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 216 for b, and -722 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-216±\sqrt{46656-4\left(-16\right)\left(-722\right)}}{2\left(-16\right)}
Square 216.
x=\frac{-216±\sqrt{46656+64\left(-722\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-216±\sqrt{46656-46208}}{2\left(-16\right)}
Multiply 64 times -722.
x=\frac{-216±\sqrt{448}}{2\left(-16\right)}
Add 46656 to -46208.
x=\frac{-216±8\sqrt{7}}{2\left(-16\right)}
Take the square root of 448.
x=\frac{-216±8\sqrt{7}}{-32}
Multiply 2 times -16.
x=\frac{8\sqrt{7}-216}{-32}
Now solve the equation x=\frac{-216±8\sqrt{7}}{-32} when ± is plus. Add -216 to 8\sqrt{7}.
x=\frac{27-\sqrt{7}}{4}
Divide -216+8\sqrt{7} by -32.
x=\frac{-8\sqrt{7}-216}{-32}
Now solve the equation x=\frac{-216±8\sqrt{7}}{-32} when ± is minus. Subtract 8\sqrt{7} from -216.
x=\frac{\sqrt{7}+27}{4}
Divide -216-8\sqrt{7} by -32.
x=\frac{27-\sqrt{7}}{4} x=\frac{\sqrt{7}+27}{4}
The equation is now solved.
-16x^{2}+216x-672=50
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+216x=50+672
Add 672 to both sides.
-16x^{2}+216x=722
Add 50 and 672 to get 722.
\frac{-16x^{2}+216x}{-16}=\frac{722}{-16}
Divide both sides by -16.
x^{2}+\frac{216}{-16}x=\frac{722}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{27}{2}x=\frac{722}{-16}
Reduce the fraction \frac{216}{-16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{27}{2}x=-\frac{361}{8}
Reduce the fraction \frac{722}{-16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{27}{2}x+\left(-\frac{27}{4}\right)^{2}=-\frac{361}{8}+\left(-\frac{27}{4}\right)^{2}
Divide -\frac{27}{2}, the coefficient of the x term, by 2 to get -\frac{27}{4}. Then add the square of -\frac{27}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{27}{2}x+\frac{729}{16}=-\frac{361}{8}+\frac{729}{16}
Square -\frac{27}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{27}{2}x+\frac{729}{16}=\frac{7}{16}
Add -\frac{361}{8} to \frac{729}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{4}\right)^{2}=\frac{7}{16}
Factor x^{2}-\frac{27}{2}x+\frac{729}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{4}\right)^{2}}=\sqrt{\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{27}{4}=\frac{\sqrt{7}}{4} x-\frac{27}{4}=-\frac{\sqrt{7}}{4}
Simplify.
x=\frac{\sqrt{7}+27}{4} x=\frac{27-\sqrt{7}}{4}
Add \frac{27}{4} to both sides of the equation.