Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

50\times 2=9,81t^{2}
Multiply both sides by 2.
100=9,81t^{2}
Multiply 50 and 2 to get 100.
9,81t^{2}=100
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{100}{9,81}
Divide both sides by 9,81.
t^{2}=\frac{10000}{981}
Expand \frac{100}{9,81} by multiplying both numerator and the denominator by 100.
t=\frac{100\sqrt{109}}{327} t=-\frac{100\sqrt{109}}{327}
Take the square root of both sides of the equation.
50\times 2=9,81t^{2}
Multiply both sides by 2.
100=9,81t^{2}
Multiply 50 and 2 to get 100.
9,81t^{2}=100
Swap sides so that all variable terms are on the left hand side.
9,81t^{2}-100=0
Subtract 100 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 9,81\left(-100\right)}}{2\times 9,81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9,81 for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 9,81\left(-100\right)}}{2\times 9,81}
Square 0.
t=\frac{0±\sqrt{-39,24\left(-100\right)}}{2\times 9,81}
Multiply -4 times 9,81.
t=\frac{0±\sqrt{3924}}{2\times 9,81}
Multiply -39,24 times -100.
t=\frac{0±6\sqrt{109}}{2\times 9,81}
Take the square root of 3924.
t=\frac{0±6\sqrt{109}}{19,62}
Multiply 2 times 9,81.
t=\frac{100\sqrt{109}}{327}
Now solve the equation t=\frac{0±6\sqrt{109}}{19,62} when ± is plus.
t=-\frac{100\sqrt{109}}{327}
Now solve the equation t=\frac{0±6\sqrt{109}}{19,62} when ± is minus.
t=\frac{100\sqrt{109}}{327} t=-\frac{100\sqrt{109}}{327}
The equation is now solved.