Solve for f_1
f_{1}=f_{2}+4
Solve for f_2
f_{2}=f_{1}-4
Share
Copied to clipboard
6000+20\left(4-f_{1}+f_{2}\right)=6000
Multiply both sides of the equation by 120.
6000+80-20f_{1}+20f_{2}=6000
Use the distributive property to multiply 20 by 4-f_{1}+f_{2}.
6080-20f_{1}+20f_{2}=6000
Add 6000 and 80 to get 6080.
-20f_{1}+20f_{2}=6000-6080
Subtract 6080 from both sides.
-20f_{1}+20f_{2}=-80
Subtract 6080 from 6000 to get -80.
-20f_{1}=-80-20f_{2}
Subtract 20f_{2} from both sides.
-20f_{1}=-20f_{2}-80
The equation is in standard form.
\frac{-20f_{1}}{-20}=\frac{-20f_{2}-80}{-20}
Divide both sides by -20.
f_{1}=\frac{-20f_{2}-80}{-20}
Dividing by -20 undoes the multiplication by -20.
f_{1}=f_{2}+4
Divide -80-20f_{2} by -20.
6000+20\left(4-f_{1}+f_{2}\right)=6000
Multiply both sides of the equation by 120.
6000+80-20f_{1}+20f_{2}=6000
Use the distributive property to multiply 20 by 4-f_{1}+f_{2}.
6080-20f_{1}+20f_{2}=6000
Add 6000 and 80 to get 6080.
-20f_{1}+20f_{2}=6000-6080
Subtract 6080 from both sides.
-20f_{1}+20f_{2}=-80
Subtract 6080 from 6000 to get -80.
20f_{2}=-80+20f_{1}
Add 20f_{1} to both sides.
20f_{2}=20f_{1}-80
The equation is in standard form.
\frac{20f_{2}}{20}=\frac{20f_{1}-80}{20}
Divide both sides by 20.
f_{2}=\frac{20f_{1}-80}{20}
Dividing by 20 undoes the multiplication by 20.
f_{2}=f_{1}-4
Divide -80+20f_{1} by 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}