Solve for x
x = \frac{10 \sqrt{148601045} - 90025}{239} \approx 133.376687385
x=\frac{-10\sqrt{148601045}-90025}{239}\approx -886.72396772
Graph
Share
Copied to clipboard
5.975x^{2}+4501.25x-706653.125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4501.25±\sqrt{4501.25^{2}-4\times 5.975\left(-706653.125\right)}}{2\times 5.975}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5.975 for a, 4501.25 for b, and -706653.125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4501.25±\sqrt{20261251.5625-4\times 5.975\left(-706653.125\right)}}{2\times 5.975}
Square 4501.25 by squaring both the numerator and the denominator of the fraction.
x=\frac{-4501.25±\sqrt{20261251.5625-23.9\left(-706653.125\right)}}{2\times 5.975}
Multiply -4 times 5.975.
x=\frac{-4501.25±\sqrt{\frac{324180025+270224155}{16}}}{2\times 5.975}
Multiply -23.9 times -706653.125 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-4501.25±\sqrt{37150261.25}}{2\times 5.975}
Add 20261251.5625 to 16889009.6875 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-4501.25±\frac{\sqrt{148601045}}{2}}{2\times 5.975}
Take the square root of 37150261.25.
x=\frac{-4501.25±\frac{\sqrt{148601045}}{2}}{11.95}
Multiply 2 times 5.975.
x=\frac{\frac{\sqrt{148601045}}{2}-\frac{18005}{4}}{11.95}
Now solve the equation x=\frac{-4501.25±\frac{\sqrt{148601045}}{2}}{11.95} when ± is plus. Add -4501.25 to \frac{\sqrt{148601045}}{2}.
x=\frac{10\sqrt{148601045}-90025}{239}
Divide -\frac{18005}{4}+\frac{\sqrt{148601045}}{2} by 11.95 by multiplying -\frac{18005}{4}+\frac{\sqrt{148601045}}{2} by the reciprocal of 11.95.
x=\frac{-\frac{\sqrt{148601045}}{2}-\frac{18005}{4}}{11.95}
Now solve the equation x=\frac{-4501.25±\frac{\sqrt{148601045}}{2}}{11.95} when ± is minus. Subtract \frac{\sqrt{148601045}}{2} from -4501.25.
x=\frac{-10\sqrt{148601045}-90025}{239}
Divide -\frac{18005}{4}-\frac{\sqrt{148601045}}{2} by 11.95 by multiplying -\frac{18005}{4}-\frac{\sqrt{148601045}}{2} by the reciprocal of 11.95.
x=\frac{10\sqrt{148601045}-90025}{239} x=\frac{-10\sqrt{148601045}-90025}{239}
The equation is now solved.
5.975x^{2}+4501.25x-706653.125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5.975x^{2}+4501.25x-706653.125-\left(-706653.125\right)=-\left(-706653.125\right)
Add 706653.125 to both sides of the equation.
5.975x^{2}+4501.25x=-\left(-706653.125\right)
Subtracting -706653.125 from itself leaves 0.
5.975x^{2}+4501.25x=706653.125
Subtract -706653.125 from 0.
\frac{5.975x^{2}+4501.25x}{5.975}=\frac{706653.125}{5.975}
Divide both sides of the equation by 5.975, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{4501.25}{5.975}x=\frac{706653.125}{5.975}
Dividing by 5.975 undoes the multiplication by 5.975.
x^{2}+\frac{180050}{239}x=\frac{706653.125}{5.975}
Divide 4501.25 by 5.975 by multiplying 4501.25 by the reciprocal of 5.975.
x^{2}+\frac{180050}{239}x=\frac{28266125}{239}
Divide 706653.125 by 5.975 by multiplying 706653.125 by the reciprocal of 5.975.
x^{2}+\frac{180050}{239}x+\frac{90025}{239}^{2}=\frac{28266125}{239}+\frac{90025}{239}^{2}
Divide \frac{180050}{239}, the coefficient of the x term, by 2 to get \frac{90025}{239}. Then add the square of \frac{90025}{239} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{180050}{239}x+\frac{8104500625}{57121}=\frac{28266125}{239}+\frac{8104500625}{57121}
Square \frac{90025}{239} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{180050}{239}x+\frac{8104500625}{57121}=\frac{14860104500}{57121}
Add \frac{28266125}{239} to \frac{8104500625}{57121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{90025}{239}\right)^{2}=\frac{14860104500}{57121}
Factor x^{2}+\frac{180050}{239}x+\frac{8104500625}{57121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{90025}{239}\right)^{2}}=\sqrt{\frac{14860104500}{57121}}
Take the square root of both sides of the equation.
x+\frac{90025}{239}=\frac{10\sqrt{148601045}}{239} x+\frac{90025}{239}=-\frac{10\sqrt{148601045}}{239}
Simplify.
x=\frac{10\sqrt{148601045}-90025}{239} x=\frac{-10\sqrt{148601045}-90025}{239}
Subtract \frac{90025}{239} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}