Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-16t^{2}+88t+4=5.545
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+88t+4-5.545=0
Subtract 5.545 from both sides.
-16t^{2}+88t-1.545=0
Subtract 5.545 from 4 to get -1.545.
t=\frac{-88±\sqrt{88^{2}-4\left(-16\right)\left(-1.545\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 88 for b, and -1.545 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-88±\sqrt{7744-4\left(-16\right)\left(-1.545\right)}}{2\left(-16\right)}
Square 88.
t=\frac{-88±\sqrt{7744+64\left(-1.545\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-88±\sqrt{7744-98.88}}{2\left(-16\right)}
Multiply 64 times -1.545.
t=\frac{-88±\sqrt{7645.12}}{2\left(-16\right)}
Add 7744 to -98.88.
t=\frac{-88±\frac{2\sqrt{47782}}{5}}{2\left(-16\right)}
Take the square root of 7645.12.
t=\frac{-88±\frac{2\sqrt{47782}}{5}}{-32}
Multiply 2 times -16.
t=\frac{\frac{2\sqrt{47782}}{5}-88}{-32}
Now solve the equation t=\frac{-88±\frac{2\sqrt{47782}}{5}}{-32} when ± is plus. Add -88 to \frac{2\sqrt{47782}}{5}.
t=-\frac{\sqrt{47782}}{80}+\frac{11}{4}
Divide -88+\frac{2\sqrt{47782}}{5} by -32.
t=\frac{-\frac{2\sqrt{47782}}{5}-88}{-32}
Now solve the equation t=\frac{-88±\frac{2\sqrt{47782}}{5}}{-32} when ± is minus. Subtract \frac{2\sqrt{47782}}{5} from -88.
t=\frac{\sqrt{47782}}{80}+\frac{11}{4}
Divide -88-\frac{2\sqrt{47782}}{5} by -32.
t=-\frac{\sqrt{47782}}{80}+\frac{11}{4} t=\frac{\sqrt{47782}}{80}+\frac{11}{4}
The equation is now solved.
-16t^{2}+88t+4=5.545
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+88t=5.545-4
Subtract 4 from both sides.
-16t^{2}+88t=1.545
Subtract 4 from 5.545 to get 1.545.
-16t^{2}+88t=\frac{309}{200}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16t^{2}+88t}{-16}=\frac{\frac{309}{200}}{-16}
Divide both sides by -16.
t^{2}+\frac{88}{-16}t=\frac{\frac{309}{200}}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{11}{2}t=\frac{\frac{309}{200}}{-16}
Reduce the fraction \frac{88}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{11}{2}t=-\frac{309}{3200}
Divide \frac{309}{200} by -16.
t^{2}-\frac{11}{2}t+\left(-\frac{11}{4}\right)^{2}=-\frac{309}{3200}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{11}{2}t+\frac{121}{16}=-\frac{309}{3200}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{11}{2}t+\frac{121}{16}=\frac{23891}{3200}
Add -\frac{309}{3200} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{11}{4}\right)^{2}=\frac{23891}{3200}
Factor t^{2}-\frac{11}{2}t+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{4}\right)^{2}}=\sqrt{\frac{23891}{3200}}
Take the square root of both sides of the equation.
t-\frac{11}{4}=\frac{\sqrt{47782}}{80} t-\frac{11}{4}=-\frac{\sqrt{47782}}{80}
Simplify.
t=\frac{\sqrt{47782}}{80}+\frac{11}{4} t=-\frac{\sqrt{47782}}{80}+\frac{11}{4}
Add \frac{11}{4} to both sides of the equation.