Evaluate
\frac{341}{15}\approx 22.733333333
Factor
\frac{11 \cdot 31}{3 \cdot 5} = 22\frac{11}{15} = 22.733333333333334
Share
Copied to clipboard
5.5\left(\frac{20}{6}+0.8\right)
Expand \frac{2}{0.6} by multiplying both numerator and the denominator by 10.
5.5\left(\frac{10}{3}+0.8\right)
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
5.5\left(\frac{10}{3}+\frac{4}{5}\right)
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
5.5\left(\frac{50}{15}+\frac{12}{15}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{10}{3} and \frac{4}{5} to fractions with denominator 15.
5.5\times \frac{50+12}{15}
Since \frac{50}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
5.5\times \frac{62}{15}
Add 50 and 12 to get 62.
\frac{11}{2}\times \frac{62}{15}
Convert decimal number 5.5 to fraction \frac{55}{10}. Reduce the fraction \frac{55}{10} to lowest terms by extracting and canceling out 5.
\frac{11\times 62}{2\times 15}
Multiply \frac{11}{2} times \frac{62}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{682}{30}
Do the multiplications in the fraction \frac{11\times 62}{2\times 15}.
\frac{341}{15}
Reduce the fraction \frac{682}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}