Solve for x
x=4-\sqrt{15}\approx 0.127016654
Graph
Share
Copied to clipboard
10-10x=5\sqrt{3\left(x^{2}+1\right)}
Multiply both sides of the equation by 2.
10-10x=5\sqrt{3x^{2}+3}
Use the distributive property to multiply 3 by x^{2}+1.
10-10x-5\sqrt{3x^{2}+3}=0
Subtract 5\sqrt{3x^{2}+3} from both sides.
-5\sqrt{3x^{2}+3}=-\left(10-10x\right)
Subtract 10-10x from both sides of the equation.
-5\sqrt{3x^{2}+3}=-10+10x
To find the opposite of 10-10x, find the opposite of each term.
\left(-5\sqrt{3x^{2}+3}\right)^{2}=\left(-10+10x\right)^{2}
Square both sides of the equation.
\left(-5\right)^{2}\left(\sqrt{3x^{2}+3}\right)^{2}=\left(-10+10x\right)^{2}
Expand \left(-5\sqrt{3x^{2}+3}\right)^{2}.
25\left(\sqrt{3x^{2}+3}\right)^{2}=\left(-10+10x\right)^{2}
Calculate -5 to the power of 2 and get 25.
25\left(3x^{2}+3\right)=\left(-10+10x\right)^{2}
Calculate \sqrt{3x^{2}+3} to the power of 2 and get 3x^{2}+3.
75x^{2}+75=\left(-10+10x\right)^{2}
Use the distributive property to multiply 25 by 3x^{2}+3.
75x^{2}+75=100-200x+100x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-10+10x\right)^{2}.
75x^{2}+75-100=-200x+100x^{2}
Subtract 100 from both sides.
75x^{2}-25=-200x+100x^{2}
Subtract 100 from 75 to get -25.
75x^{2}-25+200x=100x^{2}
Add 200x to both sides.
75x^{2}-25+200x-100x^{2}=0
Subtract 100x^{2} from both sides.
-25x^{2}-25+200x=0
Combine 75x^{2} and -100x^{2} to get -25x^{2}.
-25x^{2}+200x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\left(-25\right)\left(-25\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 200 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-25\right)\left(-25\right)}}{2\left(-25\right)}
Square 200.
x=\frac{-200±\sqrt{40000+100\left(-25\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-200±\sqrt{40000-2500}}{2\left(-25\right)}
Multiply 100 times -25.
x=\frac{-200±\sqrt{37500}}{2\left(-25\right)}
Add 40000 to -2500.
x=\frac{-200±50\sqrt{15}}{2\left(-25\right)}
Take the square root of 37500.
x=\frac{-200±50\sqrt{15}}{-50}
Multiply 2 times -25.
x=\frac{50\sqrt{15}-200}{-50}
Now solve the equation x=\frac{-200±50\sqrt{15}}{-50} when ± is plus. Add -200 to 50\sqrt{15}.
x=4-\sqrt{15}
Divide -200+50\sqrt{15} by -50.
x=\frac{-50\sqrt{15}-200}{-50}
Now solve the equation x=\frac{-200±50\sqrt{15}}{-50} when ± is minus. Subtract 50\sqrt{15} from -200.
x=\sqrt{15}+4
Divide -200-50\sqrt{15} by -50.
x=4-\sqrt{15} x=\sqrt{15}+4
The equation is now solved.
5-5\left(4-\sqrt{15}\right)=\frac{5\sqrt{3\left(\left(4-\sqrt{15}\right)^{2}+1\right)}}{2}
Substitute 4-\sqrt{15} for x in the equation 5-5x=\frac{5\sqrt{3\left(x^{2}+1\right)}}{2}.
-15+5\times 15^{\frac{1}{2}}=5\times 15^{\frac{1}{2}}-15
Simplify. The value x=4-\sqrt{15} satisfies the equation.
5-5\left(\sqrt{15}+4\right)=\frac{5\sqrt{3\left(\left(\sqrt{15}+4\right)^{2}+1\right)}}{2}
Substitute \sqrt{15}+4 for x in the equation 5-5x=\frac{5\sqrt{3\left(x^{2}+1\right)}}{2}.
-15-5\times 15^{\frac{1}{2}}=5\times 15^{\frac{1}{2}}+15
Simplify. The value x=\sqrt{15}+4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=4-\sqrt{15}
Equation -5\sqrt{3x^{2}+3}=10x-10 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}