Solve for x
x=\frac{\sqrt{2}}{2}+2\approx 2.707106781
x=-\frac{\sqrt{2}}{2}+2\approx 1.292893219
Graph
Share
Copied to clipboard
5-2x\left(x-1\right)=12-4x-2x
Use the distributive property to multiply 4 by 3-x.
5-2x\left(x-1\right)=12-6x
Combine -4x and -2x to get -6x.
5-2x\left(x-1\right)-12=-6x
Subtract 12 from both sides.
5-2x\left(x-1\right)-12+6x=0
Add 6x to both sides.
5-2x\left(x-1\right)+6x=12
Add 12 to both sides. Anything plus zero gives itself.
5-2x\left(x-1\right)+6x-12=0
Subtract 12 from both sides.
5-2x^{2}+2x+6x-12=0
Use the distributive property to multiply -2x by x-1.
5-2x^{2}+8x-12=0
Combine 2x and 6x to get 8x.
-7-2x^{2}+8x=0
Subtract 12 from 5 to get -7.
-2x^{2}+8x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 8 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
Square 8.
x=\frac{-8±\sqrt{64+8\left(-7\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-8±\sqrt{64-56}}{2\left(-2\right)}
Multiply 8 times -7.
x=\frac{-8±\sqrt{8}}{2\left(-2\right)}
Add 64 to -56.
x=\frac{-8±2\sqrt{2}}{2\left(-2\right)}
Take the square root of 8.
x=\frac{-8±2\sqrt{2}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{2}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{2}}{-4} when ± is plus. Add -8 to 2\sqrt{2}.
x=-\frac{\sqrt{2}}{2}+2
Divide 2\sqrt{2}-8 by -4.
x=\frac{-2\sqrt{2}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{2}}{-4} when ± is minus. Subtract 2\sqrt{2} from -8.
x=\frac{\sqrt{2}}{2}+2
Divide -8-2\sqrt{2} by -4.
x=-\frac{\sqrt{2}}{2}+2 x=\frac{\sqrt{2}}{2}+2
The equation is now solved.
5-2x\left(x-1\right)=12-4x-2x
Use the distributive property to multiply 4 by 3-x.
5-2x\left(x-1\right)=12-6x
Combine -4x and -2x to get -6x.
5-2x\left(x-1\right)+6x=12
Add 6x to both sides.
5-2x^{2}+2x+6x=12
Use the distributive property to multiply -2x by x-1.
5-2x^{2}+8x=12
Combine 2x and 6x to get 8x.
-2x^{2}+8x=12-5
Subtract 5 from both sides.
-2x^{2}+8x=7
Subtract 5 from 12 to get 7.
\frac{-2x^{2}+8x}{-2}=\frac{7}{-2}
Divide both sides by -2.
x^{2}+\frac{8}{-2}x=\frac{7}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-4x=\frac{7}{-2}
Divide 8 by -2.
x^{2}-4x=-\frac{7}{2}
Divide 7 by -2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{7}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{7}{2}+4
Square -2.
x^{2}-4x+4=\frac{1}{2}
Add -\frac{7}{2} to 4.
\left(x-2\right)^{2}=\frac{1}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{2}}{2} x-2=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}}{2}+2 x=-\frac{\sqrt{2}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}