Solve for x (complex solution)
x=\frac{-\sqrt{19}i+3}{2}\approx 1.5-2.179449472i
x=\frac{3+\sqrt{19}i}{2}\approx 1.5+2.179449472i
Graph
Share
Copied to clipboard
-x^{2}+3x+5=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+3x+5-12=12-12
Subtract 12 from both sides of the equation.
-x^{2}+3x+5-12=0
Subtracting 12 from itself leaves 0.
-x^{2}+3x-7=0
Subtract 12 from 5.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
Multiply 4 times -7.
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
Add 9 to -28.
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
Take the square root of -19.
x=\frac{-3±\sqrt{19}i}{-2}
Multiply 2 times -1.
x=\frac{-3+\sqrt{19}i}{-2}
Now solve the equation x=\frac{-3±\sqrt{19}i}{-2} when ± is plus. Add -3 to i\sqrt{19}.
x=\frac{-\sqrt{19}i+3}{2}
Divide -3+i\sqrt{19} by -2.
x=\frac{-\sqrt{19}i-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{19}i}{-2} when ± is minus. Subtract i\sqrt{19} from -3.
x=\frac{3+\sqrt{19}i}{2}
Divide -3-i\sqrt{19} by -2.
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
The equation is now solved.
-x^{2}+3x+5=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+3x+5-5=12-5
Subtract 5 from both sides of the equation.
-x^{2}+3x=12-5
Subtracting 5 from itself leaves 0.
-x^{2}+3x=7
Subtract 5 from 12.
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=\frac{7}{-1}
Divide 3 by -1.
x^{2}-3x=-7
Divide 7 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
Add -7 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
Simplify.
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}