Solve for x
x=-19
Graph
Share
Copied to clipboard
5-\frac{2}{5}x-\frac{2}{5}\times 24=-\frac{3}{4}\left(15+x\right)
Use the distributive property to multiply -\frac{2}{5} by x+24.
5-\frac{2}{5}x+\frac{-2\times 24}{5}=-\frac{3}{4}\left(15+x\right)
Express -\frac{2}{5}\times 24 as a single fraction.
5-\frac{2}{5}x+\frac{-48}{5}=-\frac{3}{4}\left(15+x\right)
Multiply -2 and 24 to get -48.
5-\frac{2}{5}x-\frac{48}{5}=-\frac{3}{4}\left(15+x\right)
Fraction \frac{-48}{5} can be rewritten as -\frac{48}{5} by extracting the negative sign.
\frac{25}{5}-\frac{2}{5}x-\frac{48}{5}=-\frac{3}{4}\left(15+x\right)
Convert 5 to fraction \frac{25}{5}.
\frac{25-48}{5}-\frac{2}{5}x=-\frac{3}{4}\left(15+x\right)
Since \frac{25}{5} and \frac{48}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{5}-\frac{2}{5}x=-\frac{3}{4}\left(15+x\right)
Subtract 48 from 25 to get -23.
-\frac{23}{5}-\frac{2}{5}x=-\frac{3}{4}\times 15-\frac{3}{4}x
Use the distributive property to multiply -\frac{3}{4} by 15+x.
-\frac{23}{5}-\frac{2}{5}x=\frac{-3\times 15}{4}-\frac{3}{4}x
Express -\frac{3}{4}\times 15 as a single fraction.
-\frac{23}{5}-\frac{2}{5}x=\frac{-45}{4}-\frac{3}{4}x
Multiply -3 and 15 to get -45.
-\frac{23}{5}-\frac{2}{5}x=-\frac{45}{4}-\frac{3}{4}x
Fraction \frac{-45}{4} can be rewritten as -\frac{45}{4} by extracting the negative sign.
-\frac{23}{5}-\frac{2}{5}x+\frac{3}{4}x=-\frac{45}{4}
Add \frac{3}{4}x to both sides.
-\frac{23}{5}+\frac{7}{20}x=-\frac{45}{4}
Combine -\frac{2}{5}x and \frac{3}{4}x to get \frac{7}{20}x.
\frac{7}{20}x=-\frac{45}{4}+\frac{23}{5}
Add \frac{23}{5} to both sides.
\frac{7}{20}x=-\frac{225}{20}+\frac{92}{20}
Least common multiple of 4 and 5 is 20. Convert -\frac{45}{4} and \frac{23}{5} to fractions with denominator 20.
\frac{7}{20}x=\frac{-225+92}{20}
Since -\frac{225}{20} and \frac{92}{20} have the same denominator, add them by adding their numerators.
\frac{7}{20}x=-\frac{133}{20}
Add -225 and 92 to get -133.
x=-\frac{133}{20}\times \frac{20}{7}
Multiply both sides by \frac{20}{7}, the reciprocal of \frac{7}{20}.
x=\frac{-133\times 20}{20\times 7}
Multiply -\frac{133}{20} times \frac{20}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-133}{7}
Cancel out 20 in both numerator and denominator.
x=-19
Divide -133 by 7 to get -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}