Solve for x
x = -\frac{27}{4} = -6\frac{3}{4} = -6.75
Graph
Share
Copied to clipboard
5x-35-2\left(3x-4\right)=3x
Use the distributive property to multiply 5 by x-7.
5x-35-6x+8=3x
Use the distributive property to multiply -2 by 3x-4.
-x-35+8=3x
Combine 5x and -6x to get -x.
-x-27=3x
Add -35 and 8 to get -27.
-x-27-3x=0
Subtract 3x from both sides.
-4x-27=0
Combine -x and -3x to get -4x.
-4x=27
Add 27 to both sides. Anything plus zero gives itself.
x=\frac{27}{-4}
Divide both sides by -4.
x=-\frac{27}{4}
Fraction \frac{27}{-4} can be rewritten as -\frac{27}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}