Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
5x+15+12x=4-7\left(2-x\right)
Use the distributive property to multiply 5 by x+3.
17x+15=4-7\left(2-x\right)
Combine 5x and 12x to get 17x.
17x+15=4-14+7x
Use the distributive property to multiply -7 by 2-x.
17x+15=-10+7x
Subtract 14 from 4 to get -10.
17x+15-7x=-10
Subtract 7x from both sides.
10x+15=-10
Combine 17x and -7x to get 10x.
10x=-10-15
Subtract 15 from both sides.
10x=-25
Subtract 15 from -10 to get -25.
x=\frac{-25}{10}
Divide both sides by 10.
x=-\frac{5}{2}
Reduce the fraction \frac{-25}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}