Solve for x
x=\frac{\sqrt{265}}{10}+\frac{7}{2}\approx 5.12788206
x=-\frac{\sqrt{265}}{10}+\frac{7}{2}\approx 1.87211794
Graph
Share
Copied to clipboard
\left(25x-50\right)\left(2x-10\right)=20
Use the distributive property to multiply 5 by 5x-10.
50x^{2}-350x+500=20
Use the distributive property to multiply 25x-50 by 2x-10 and combine like terms.
50x^{2}-350x+500-20=0
Subtract 20 from both sides.
50x^{2}-350x+480=0
Subtract 20 from 500 to get 480.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 50\times 480}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -350 for b, and 480 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-350\right)±\sqrt{122500-4\times 50\times 480}}{2\times 50}
Square -350.
x=\frac{-\left(-350\right)±\sqrt{122500-200\times 480}}{2\times 50}
Multiply -4 times 50.
x=\frac{-\left(-350\right)±\sqrt{122500-96000}}{2\times 50}
Multiply -200 times 480.
x=\frac{-\left(-350\right)±\sqrt{26500}}{2\times 50}
Add 122500 to -96000.
x=\frac{-\left(-350\right)±10\sqrt{265}}{2\times 50}
Take the square root of 26500.
x=\frac{350±10\sqrt{265}}{2\times 50}
The opposite of -350 is 350.
x=\frac{350±10\sqrt{265}}{100}
Multiply 2 times 50.
x=\frac{10\sqrt{265}+350}{100}
Now solve the equation x=\frac{350±10\sqrt{265}}{100} when ± is plus. Add 350 to 10\sqrt{265}.
x=\frac{\sqrt{265}}{10}+\frac{7}{2}
Divide 350+10\sqrt{265} by 100.
x=\frac{350-10\sqrt{265}}{100}
Now solve the equation x=\frac{350±10\sqrt{265}}{100} when ± is minus. Subtract 10\sqrt{265} from 350.
x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
Divide 350-10\sqrt{265} by 100.
x=\frac{\sqrt{265}}{10}+\frac{7}{2} x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
The equation is now solved.
\left(25x-50\right)\left(2x-10\right)=20
Use the distributive property to multiply 5 by 5x-10.
50x^{2}-350x+500=20
Use the distributive property to multiply 25x-50 by 2x-10 and combine like terms.
50x^{2}-350x=20-500
Subtract 500 from both sides.
50x^{2}-350x=-480
Subtract 500 from 20 to get -480.
\frac{50x^{2}-350x}{50}=-\frac{480}{50}
Divide both sides by 50.
x^{2}+\left(-\frac{350}{50}\right)x=-\frac{480}{50}
Dividing by 50 undoes the multiplication by 50.
x^{2}-7x=-\frac{480}{50}
Divide -350 by 50.
x^{2}-7x=-\frac{48}{5}
Reduce the fraction \frac{-480}{50} to lowest terms by extracting and canceling out 10.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{48}{5}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-\frac{48}{5}+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{53}{20}
Add -\frac{48}{5} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=\frac{53}{20}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{53}{20}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{265}}{10} x-\frac{7}{2}=-\frac{\sqrt{265}}{10}
Simplify.
x=\frac{\sqrt{265}}{10}+\frac{7}{2} x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}