Solve for x
x=\frac{y^{2}}{2}-\frac{3y}{5}+\frac{51}{10}
Solve for y (complex solution)
y=\frac{-\sqrt{50x-246}+3}{5}
y=\frac{\sqrt{50x-246}+3}{5}
Solve for y
y=\frac{-\sqrt{50x-246}+3}{5}
y=\frac{\sqrt{50x-246}+3}{5}\text{, }x\geq \frac{123}{25}
Graph
Share
Copied to clipboard
10x-50-y\left(5y-6\right)=1
Use the distributive property to multiply 5 by 2x-10.
10x-50-\left(5y^{2}-6y\right)=1
Use the distributive property to multiply y by 5y-6.
10x-50-5y^{2}+6y=1
To find the opposite of 5y^{2}-6y, find the opposite of each term.
10x-5y^{2}+6y=1+50
Add 50 to both sides.
10x-5y^{2}+6y=51
Add 1 and 50 to get 51.
10x+6y=51+5y^{2}
Add 5y^{2} to both sides.
10x=51+5y^{2}-6y
Subtract 6y from both sides.
10x=5y^{2}-6y+51
The equation is in standard form.
\frac{10x}{10}=\frac{5y^{2}-6y+51}{10}
Divide both sides by 10.
x=\frac{5y^{2}-6y+51}{10}
Dividing by 10 undoes the multiplication by 10.
x=\frac{y^{2}}{2}-\frac{3y}{5}+\frac{51}{10}
Divide 51+5y^{2}-6y by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}