Solve for x (complex solution)
x=\frac{19+\sqrt{399}i}{40}\approx 0.475+0.499374609i
x=\frac{-\sqrt{399}i+19}{40}\approx 0.475-0.499374609i
Graph
Share
Copied to clipboard
5\left(2x-1\right)\left(4x-1\right)+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Variable x cannot be equal to \frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 4x-1.
\left(10x-5\right)\left(4x-1\right)+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Use the distributive property to multiply 5 by 2x-1.
40x^{2}-30x+5+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Use the distributive property to multiply 10x-5 by 4x-1 and combine like terms.
40x^{2}-30x+5+3\left(4x+3\right)=5\left(4x-1\right)
Multiply 3 and 1 to get 3.
40x^{2}-30x+5+12x+9=5\left(4x-1\right)
Use the distributive property to multiply 3 by 4x+3.
40x^{2}-18x+5+9=5\left(4x-1\right)
Combine -30x and 12x to get -18x.
40x^{2}-18x+14=5\left(4x-1\right)
Add 5 and 9 to get 14.
40x^{2}-18x+14=20x-5
Use the distributive property to multiply 5 by 4x-1.
40x^{2}-18x+14-20x=-5
Subtract 20x from both sides.
40x^{2}-38x+14=-5
Combine -18x and -20x to get -38x.
40x^{2}-38x+14+5=0
Add 5 to both sides.
40x^{2}-38x+19=0
Add 14 and 5 to get 19.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\times 40\times 19}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, -38 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\times 40\times 19}}{2\times 40}
Square -38.
x=\frac{-\left(-38\right)±\sqrt{1444-160\times 19}}{2\times 40}
Multiply -4 times 40.
x=\frac{-\left(-38\right)±\sqrt{1444-3040}}{2\times 40}
Multiply -160 times 19.
x=\frac{-\left(-38\right)±\sqrt{-1596}}{2\times 40}
Add 1444 to -3040.
x=\frac{-\left(-38\right)±2\sqrt{399}i}{2\times 40}
Take the square root of -1596.
x=\frac{38±2\sqrt{399}i}{2\times 40}
The opposite of -38 is 38.
x=\frac{38±2\sqrt{399}i}{80}
Multiply 2 times 40.
x=\frac{38+2\sqrt{399}i}{80}
Now solve the equation x=\frac{38±2\sqrt{399}i}{80} when ± is plus. Add 38 to 2i\sqrt{399}.
x=\frac{19+\sqrt{399}i}{40}
Divide 38+2i\sqrt{399} by 80.
x=\frac{-2\sqrt{399}i+38}{80}
Now solve the equation x=\frac{38±2\sqrt{399}i}{80} when ± is minus. Subtract 2i\sqrt{399} from 38.
x=\frac{-\sqrt{399}i+19}{40}
Divide 38-2i\sqrt{399} by 80.
x=\frac{19+\sqrt{399}i}{40} x=\frac{-\sqrt{399}i+19}{40}
The equation is now solved.
5\left(2x-1\right)\left(4x-1\right)+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Variable x cannot be equal to \frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 4x-1.
\left(10x-5\right)\left(4x-1\right)+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Use the distributive property to multiply 5 by 2x-1.
40x^{2}-30x+5+3\left(4x+3\right)\times 1=5\left(4x-1\right)
Use the distributive property to multiply 10x-5 by 4x-1 and combine like terms.
40x^{2}-30x+5+3\left(4x+3\right)=5\left(4x-1\right)
Multiply 3 and 1 to get 3.
40x^{2}-30x+5+12x+9=5\left(4x-1\right)
Use the distributive property to multiply 3 by 4x+3.
40x^{2}-18x+5+9=5\left(4x-1\right)
Combine -30x and 12x to get -18x.
40x^{2}-18x+14=5\left(4x-1\right)
Add 5 and 9 to get 14.
40x^{2}-18x+14=20x-5
Use the distributive property to multiply 5 by 4x-1.
40x^{2}-18x+14-20x=-5
Subtract 20x from both sides.
40x^{2}-38x+14=-5
Combine -18x and -20x to get -38x.
40x^{2}-38x=-5-14
Subtract 14 from both sides.
40x^{2}-38x=-19
Subtract 14 from -5 to get -19.
\frac{40x^{2}-38x}{40}=-\frac{19}{40}
Divide both sides by 40.
x^{2}+\left(-\frac{38}{40}\right)x=-\frac{19}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}-\frac{19}{20}x=-\frac{19}{40}
Reduce the fraction \frac{-38}{40} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{19}{20}x+\left(-\frac{19}{40}\right)^{2}=-\frac{19}{40}+\left(-\frac{19}{40}\right)^{2}
Divide -\frac{19}{20}, the coefficient of the x term, by 2 to get -\frac{19}{40}. Then add the square of -\frac{19}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{20}x+\frac{361}{1600}=-\frac{19}{40}+\frac{361}{1600}
Square -\frac{19}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{20}x+\frac{361}{1600}=-\frac{399}{1600}
Add -\frac{19}{40} to \frac{361}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{40}\right)^{2}=-\frac{399}{1600}
Factor x^{2}-\frac{19}{20}x+\frac{361}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{40}\right)^{2}}=\sqrt{-\frac{399}{1600}}
Take the square root of both sides of the equation.
x-\frac{19}{40}=\frac{\sqrt{399}i}{40} x-\frac{19}{40}=-\frac{\sqrt{399}i}{40}
Simplify.
x=\frac{19+\sqrt{399}i}{40} x=\frac{-\sqrt{399}i+19}{40}
Add \frac{19}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}