Solve for x
x = -\frac{16}{11} = -1\frac{5}{11} \approx -1.454545455
Graph
Share
Copied to clipboard
10x+15-\left(x-2\right)=2\left(x-2\right)-\left(2x-2\right)-\left(2x-3\right)
Use the distributive property to multiply 5 by 2x+3.
10x+15-x-\left(-2\right)=2\left(x-2\right)-\left(2x-2\right)-\left(2x-3\right)
To find the opposite of x-2, find the opposite of each term.
10x+15-x+2=2\left(x-2\right)-\left(2x-2\right)-\left(2x-3\right)
The opposite of -2 is 2.
9x+15+2=2\left(x-2\right)-\left(2x-2\right)-\left(2x-3\right)
Combine 10x and -x to get 9x.
9x+17=2\left(x-2\right)-\left(2x-2\right)-\left(2x-3\right)
Add 15 and 2 to get 17.
9x+17=2x-4-\left(2x-2\right)-\left(2x-3\right)
Use the distributive property to multiply 2 by x-2.
9x+17=2x-4-2x-\left(-2\right)-\left(2x-3\right)
To find the opposite of 2x-2, find the opposite of each term.
9x+17=2x-4-2x+2-\left(2x-3\right)
The opposite of -2 is 2.
9x+17=-4+2-\left(2x-3\right)
Combine 2x and -2x to get 0.
9x+17=-2-\left(2x-3\right)
Add -4 and 2 to get -2.
9x+17=-2-2x-\left(-3\right)
To find the opposite of 2x-3, find the opposite of each term.
9x+17=-2-2x+3
The opposite of -3 is 3.
9x+17=1-2x
Add -2 and 3 to get 1.
9x+17+2x=1
Add 2x to both sides.
11x+17=1
Combine 9x and 2x to get 11x.
11x=1-17
Subtract 17 from both sides.
11x=-16
Subtract 17 from 1 to get -16.
x=\frac{-16}{11}
Divide both sides by 11.
x=-\frac{16}{11}
Fraction \frac{-16}{11} can be rewritten as -\frac{16}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}