Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+5+3\left(2x-6\right)=\left(-\left(x-7\right)\right)\times 3x
Use the distributive property to multiply 5 by 2x+1.
10x+5+6x-18=\left(-\left(x-7\right)\right)\times 3x
Use the distributive property to multiply 3 by 2x-6.
16x+5-18=\left(-\left(x-7\right)\right)\times 3x
Combine 10x and 6x to get 16x.
16x-13=\left(-\left(x-7\right)\right)\times 3x
Subtract 18 from 5 to get -13.
16x-13=\left(-x-\left(-7\right)\right)\times 3x
To find the opposite of x-7, find the opposite of each term.
16x-13=\left(-x+7\right)\times 3x
The opposite of -7 is 7.
16x-13=\left(-3x+21\right)x
Use the distributive property to multiply -x+7 by 3.
16x-13=-3x^{2}+21x
Use the distributive property to multiply -3x+21 by x.
16x-13+3x^{2}=21x
Add 3x^{2} to both sides.
16x-13+3x^{2}-21x=0
Subtract 21x from both sides.
-5x-13+3x^{2}=0
Combine 16x and -21x to get -5x.
3x^{2}-5x-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-13\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -5 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-13\right)}}{2\times 3}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-13\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-5\right)±\sqrt{25+156}}{2\times 3}
Multiply -12 times -13.
x=\frac{-\left(-5\right)±\sqrt{181}}{2\times 3}
Add 25 to 156.
x=\frac{5±\sqrt{181}}{2\times 3}
The opposite of -5 is 5.
x=\frac{5±\sqrt{181}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{181}+5}{6}
Now solve the equation x=\frac{5±\sqrt{181}}{6} when ± is plus. Add 5 to \sqrt{181}.
x=\frac{5-\sqrt{181}}{6}
Now solve the equation x=\frac{5±\sqrt{181}}{6} when ± is minus. Subtract \sqrt{181} from 5.
x=\frac{\sqrt{181}+5}{6} x=\frac{5-\sqrt{181}}{6}
The equation is now solved.
10x+5+3\left(2x-6\right)=\left(-\left(x-7\right)\right)\times 3x
Use the distributive property to multiply 5 by 2x+1.
10x+5+6x-18=\left(-\left(x-7\right)\right)\times 3x
Use the distributive property to multiply 3 by 2x-6.
16x+5-18=\left(-\left(x-7\right)\right)\times 3x
Combine 10x and 6x to get 16x.
16x-13=\left(-\left(x-7\right)\right)\times 3x
Subtract 18 from 5 to get -13.
16x-13=\left(-x-\left(-7\right)\right)\times 3x
To find the opposite of x-7, find the opposite of each term.
16x-13=\left(-x+7\right)\times 3x
The opposite of -7 is 7.
16x-13=\left(-3x+21\right)x
Use the distributive property to multiply -x+7 by 3.
16x-13=-3x^{2}+21x
Use the distributive property to multiply -3x+21 by x.
16x-13+3x^{2}=21x
Add 3x^{2} to both sides.
16x-13+3x^{2}-21x=0
Subtract 21x from both sides.
-5x-13+3x^{2}=0
Combine 16x and -21x to get -5x.
-5x+3x^{2}=13
Add 13 to both sides. Anything plus zero gives itself.
3x^{2}-5x=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-5x}{3}=\frac{13}{3}
Divide both sides by 3.
x^{2}-\frac{5}{3}x=\frac{13}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\frac{13}{3}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{13}{3}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{181}{36}
Add \frac{13}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=\frac{181}{36}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{181}{36}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{\sqrt{181}}{6} x-\frac{5}{6}=-\frac{\sqrt{181}}{6}
Simplify.
x=\frac{\sqrt{181}+5}{6} x=\frac{5-\sqrt{181}}{6}
Add \frac{5}{6} to both sides of the equation.