Solve for x
x=\frac{\sqrt{19}-1}{9}\approx 0.373210994
x=\frac{-\sqrt{19}-1}{9}\approx -0.595433216
Graph
Share
Copied to clipboard
9x^{2}+2x+3=5
Swap sides so that all variable terms are on the left hand side.
9x^{2}+2x+3-5=0
Subtract 5 from both sides.
9x^{2}+2x-2=0
Subtract 5 from 3 to get -2.
x=\frac{-2±\sqrt{2^{2}-4\times 9\left(-2\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 9\left(-2\right)}}{2\times 9}
Square 2.
x=\frac{-2±\sqrt{4-36\left(-2\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-2±\sqrt{4+72}}{2\times 9}
Multiply -36 times -2.
x=\frac{-2±\sqrt{76}}{2\times 9}
Add 4 to 72.
x=\frac{-2±2\sqrt{19}}{2\times 9}
Take the square root of 76.
x=\frac{-2±2\sqrt{19}}{18}
Multiply 2 times 9.
x=\frac{2\sqrt{19}-2}{18}
Now solve the equation x=\frac{-2±2\sqrt{19}}{18} when ± is plus. Add -2 to 2\sqrt{19}.
x=\frac{\sqrt{19}-1}{9}
Divide -2+2\sqrt{19} by 18.
x=\frac{-2\sqrt{19}-2}{18}
Now solve the equation x=\frac{-2±2\sqrt{19}}{18} when ± is minus. Subtract 2\sqrt{19} from -2.
x=\frac{-\sqrt{19}-1}{9}
Divide -2-2\sqrt{19} by 18.
x=\frac{\sqrt{19}-1}{9} x=\frac{-\sqrt{19}-1}{9}
The equation is now solved.
9x^{2}+2x+3=5
Swap sides so that all variable terms are on the left hand side.
9x^{2}+2x=5-3
Subtract 3 from both sides.
9x^{2}+2x=2
Subtract 3 from 5 to get 2.
\frac{9x^{2}+2x}{9}=\frac{2}{9}
Divide both sides by 9.
x^{2}+\frac{2}{9}x=\frac{2}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=\frac{2}{9}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{2}{9}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{19}{81}
Add \frac{2}{9} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=\frac{19}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{\frac{19}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{\sqrt{19}}{9} x+\frac{1}{9}=-\frac{\sqrt{19}}{9}
Simplify.
x=\frac{\sqrt{19}-1}{9} x=\frac{-\sqrt{19}-1}{9}
Subtract \frac{1}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}