Solve for x (complex solution)
x=\sqrt{103}-11\approx -0.851108435
x=-\left(\sqrt{103}+11\right)\approx -21.148891565
Solve for x
x=\sqrt{103}-11\approx -0.851108435
x=-\sqrt{103}-11\approx -21.148891565
Graph
Share
Copied to clipboard
5\left(x+1\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+4\right), the least common multiple of x+1,x+4.
\left(5x+5\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5 by x+1.
5x^{2}+25x+20=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5x+5 by x+4 and combine like terms.
5x^{2}+25x+20=x+4+4x^{2}+2x-2
Use the distributive property to multiply x+1 by 4x-2 and combine like terms.
5x^{2}+25x+20=3x+4+4x^{2}-2
Combine x and 2x to get 3x.
5x^{2}+25x+20=3x+2+4x^{2}
Subtract 2 from 4 to get 2.
5x^{2}+25x+20-3x=2+4x^{2}
Subtract 3x from both sides.
5x^{2}+22x+20=2+4x^{2}
Combine 25x and -3x to get 22x.
5x^{2}+22x+20-2=4x^{2}
Subtract 2 from both sides.
5x^{2}+22x+18=4x^{2}
Subtract 2 from 20 to get 18.
5x^{2}+22x+18-4x^{2}=0
Subtract 4x^{2} from both sides.
x^{2}+22x+18=0
Combine 5x^{2} and -4x^{2} to get x^{2}.
x=\frac{-22±\sqrt{22^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 22 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 18}}{2}
Square 22.
x=\frac{-22±\sqrt{484-72}}{2}
Multiply -4 times 18.
x=\frac{-22±\sqrt{412}}{2}
Add 484 to -72.
x=\frac{-22±2\sqrt{103}}{2}
Take the square root of 412.
x=\frac{2\sqrt{103}-22}{2}
Now solve the equation x=\frac{-22±2\sqrt{103}}{2} when ± is plus. Add -22 to 2\sqrt{103}.
x=\sqrt{103}-11
Divide -22+2\sqrt{103} by 2.
x=\frac{-2\sqrt{103}-22}{2}
Now solve the equation x=\frac{-22±2\sqrt{103}}{2} when ± is minus. Subtract 2\sqrt{103} from -22.
x=-\sqrt{103}-11
Divide -22-2\sqrt{103} by 2.
x=\sqrt{103}-11 x=-\sqrt{103}-11
The equation is now solved.
5\left(x+1\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+4\right), the least common multiple of x+1,x+4.
\left(5x+5\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5 by x+1.
5x^{2}+25x+20=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5x+5 by x+4 and combine like terms.
5x^{2}+25x+20=x+4+4x^{2}+2x-2
Use the distributive property to multiply x+1 by 4x-2 and combine like terms.
5x^{2}+25x+20=3x+4+4x^{2}-2
Combine x and 2x to get 3x.
5x^{2}+25x+20=3x+2+4x^{2}
Subtract 2 from 4 to get 2.
5x^{2}+25x+20-3x=2+4x^{2}
Subtract 3x from both sides.
5x^{2}+22x+20=2+4x^{2}
Combine 25x and -3x to get 22x.
5x^{2}+22x+20-4x^{2}=2
Subtract 4x^{2} from both sides.
x^{2}+22x+20=2
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}+22x=2-20
Subtract 20 from both sides.
x^{2}+22x=-18
Subtract 20 from 2 to get -18.
x^{2}+22x+11^{2}=-18+11^{2}
Divide 22, the coefficient of the x term, by 2 to get 11. Then add the square of 11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+22x+121=-18+121
Square 11.
x^{2}+22x+121=103
Add -18 to 121.
\left(x+11\right)^{2}=103
Factor x^{2}+22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+11\right)^{2}}=\sqrt{103}
Take the square root of both sides of the equation.
x+11=\sqrt{103} x+11=-\sqrt{103}
Simplify.
x=\sqrt{103}-11 x=-\sqrt{103}-11
Subtract 11 from both sides of the equation.
5\left(x+1\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+4\right), the least common multiple of x+1,x+4.
\left(5x+5\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5 by x+1.
5x^{2}+25x+20=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5x+5 by x+4 and combine like terms.
5x^{2}+25x+20=x+4+4x^{2}+2x-2
Use the distributive property to multiply x+1 by 4x-2 and combine like terms.
5x^{2}+25x+20=3x+4+4x^{2}-2
Combine x and 2x to get 3x.
5x^{2}+25x+20=3x+2+4x^{2}
Subtract 2 from 4 to get 2.
5x^{2}+25x+20-3x=2+4x^{2}
Subtract 3x from both sides.
5x^{2}+22x+20=2+4x^{2}
Combine 25x and -3x to get 22x.
5x^{2}+22x+20-2=4x^{2}
Subtract 2 from both sides.
5x^{2}+22x+18=4x^{2}
Subtract 2 from 20 to get 18.
5x^{2}+22x+18-4x^{2}=0
Subtract 4x^{2} from both sides.
x^{2}+22x+18=0
Combine 5x^{2} and -4x^{2} to get x^{2}.
x=\frac{-22±\sqrt{22^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 22 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 18}}{2}
Square 22.
x=\frac{-22±\sqrt{484-72}}{2}
Multiply -4 times 18.
x=\frac{-22±\sqrt{412}}{2}
Add 484 to -72.
x=\frac{-22±2\sqrt{103}}{2}
Take the square root of 412.
x=\frac{2\sqrt{103}-22}{2}
Now solve the equation x=\frac{-22±2\sqrt{103}}{2} when ± is plus. Add -22 to 2\sqrt{103}.
x=\sqrt{103}-11
Divide -22+2\sqrt{103} by 2.
x=\frac{-2\sqrt{103}-22}{2}
Now solve the equation x=\frac{-22±2\sqrt{103}}{2} when ± is minus. Subtract 2\sqrt{103} from -22.
x=-\sqrt{103}-11
Divide -22-2\sqrt{103} by 2.
x=\sqrt{103}-11 x=-\sqrt{103}-11
The equation is now solved.
5\left(x+1\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+4\right), the least common multiple of x+1,x+4.
\left(5x+5\right)\left(x+4\right)=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5 by x+1.
5x^{2}+25x+20=x+4+\left(x+1\right)\left(4x-2\right)
Use the distributive property to multiply 5x+5 by x+4 and combine like terms.
5x^{2}+25x+20=x+4+4x^{2}+2x-2
Use the distributive property to multiply x+1 by 4x-2 and combine like terms.
5x^{2}+25x+20=3x+4+4x^{2}-2
Combine x and 2x to get 3x.
5x^{2}+25x+20=3x+2+4x^{2}
Subtract 2 from 4 to get 2.
5x^{2}+25x+20-3x=2+4x^{2}
Subtract 3x from both sides.
5x^{2}+22x+20=2+4x^{2}
Combine 25x and -3x to get 22x.
5x^{2}+22x+20-4x^{2}=2
Subtract 4x^{2} from both sides.
x^{2}+22x+20=2
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}+22x=2-20
Subtract 20 from both sides.
x^{2}+22x=-18
Subtract 20 from 2 to get -18.
x^{2}+22x+11^{2}=-18+11^{2}
Divide 22, the coefficient of the x term, by 2 to get 11. Then add the square of 11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+22x+121=-18+121
Square 11.
x^{2}+22x+121=103
Add -18 to 121.
\left(x+11\right)^{2}=103
Factor x^{2}+22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+11\right)^{2}}=\sqrt{103}
Take the square root of both sides of the equation.
x+11=\sqrt{103} x+11=-\sqrt{103}
Simplify.
x=\sqrt{103}-11 x=-\sqrt{103}-11
Subtract 11 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}