Solve for z
z=2
z=3
Share
Copied to clipboard
5z^{2}-25z=-30
Use the distributive property to multiply 5z by z-5.
5z^{2}-25z+30=0
Add 30 to both sides.
z=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\times 30}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -25 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-25\right)±\sqrt{625-4\times 5\times 30}}{2\times 5}
Square -25.
z=\frac{-\left(-25\right)±\sqrt{625-20\times 30}}{2\times 5}
Multiply -4 times 5.
z=\frac{-\left(-25\right)±\sqrt{625-600}}{2\times 5}
Multiply -20 times 30.
z=\frac{-\left(-25\right)±\sqrt{25}}{2\times 5}
Add 625 to -600.
z=\frac{-\left(-25\right)±5}{2\times 5}
Take the square root of 25.
z=\frac{25±5}{2\times 5}
The opposite of -25 is 25.
z=\frac{25±5}{10}
Multiply 2 times 5.
z=\frac{30}{10}
Now solve the equation z=\frac{25±5}{10} when ± is plus. Add 25 to 5.
z=3
Divide 30 by 10.
z=\frac{20}{10}
Now solve the equation z=\frac{25±5}{10} when ± is minus. Subtract 5 from 25.
z=2
Divide 20 by 10.
z=3 z=2
The equation is now solved.
5z^{2}-25z=-30
Use the distributive property to multiply 5z by z-5.
\frac{5z^{2}-25z}{5}=-\frac{30}{5}
Divide both sides by 5.
z^{2}+\left(-\frac{25}{5}\right)z=-\frac{30}{5}
Dividing by 5 undoes the multiplication by 5.
z^{2}-5z=-\frac{30}{5}
Divide -25 by 5.
z^{2}-5z=-6
Divide -30 by 5.
z^{2}-5z+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-5z+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
z^{2}-5z+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(z-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor z^{2}-5z+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
z-\frac{5}{2}=\frac{1}{2} z-\frac{5}{2}=-\frac{1}{2}
Simplify.
z=3 z=2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}