Solve for z
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
z=\frac{1}{5}=0.2
Share
Copied to clipboard
10z^{2}+15z=2z+3
Use the distributive property to multiply 5z by 2z+3.
10z^{2}+15z-2z=3
Subtract 2z from both sides.
10z^{2}+13z=3
Combine 15z and -2z to get 13z.
10z^{2}+13z-3=0
Subtract 3 from both sides.
z=\frac{-13±\sqrt{13^{2}-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 13 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-13±\sqrt{169-4\times 10\left(-3\right)}}{2\times 10}
Square 13.
z=\frac{-13±\sqrt{169-40\left(-3\right)}}{2\times 10}
Multiply -4 times 10.
z=\frac{-13±\sqrt{169+120}}{2\times 10}
Multiply -40 times -3.
z=\frac{-13±\sqrt{289}}{2\times 10}
Add 169 to 120.
z=\frac{-13±17}{2\times 10}
Take the square root of 289.
z=\frac{-13±17}{20}
Multiply 2 times 10.
z=\frac{4}{20}
Now solve the equation z=\frac{-13±17}{20} when ± is plus. Add -13 to 17.
z=\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
z=-\frac{30}{20}
Now solve the equation z=\frac{-13±17}{20} when ± is minus. Subtract 17 from -13.
z=-\frac{3}{2}
Reduce the fraction \frac{-30}{20} to lowest terms by extracting and canceling out 10.
z=\frac{1}{5} z=-\frac{3}{2}
The equation is now solved.
10z^{2}+15z=2z+3
Use the distributive property to multiply 5z by 2z+3.
10z^{2}+15z-2z=3
Subtract 2z from both sides.
10z^{2}+13z=3
Combine 15z and -2z to get 13z.
\frac{10z^{2}+13z}{10}=\frac{3}{10}
Divide both sides by 10.
z^{2}+\frac{13}{10}z=\frac{3}{10}
Dividing by 10 undoes the multiplication by 10.
z^{2}+\frac{13}{10}z+\left(\frac{13}{20}\right)^{2}=\frac{3}{10}+\left(\frac{13}{20}\right)^{2}
Divide \frac{13}{10}, the coefficient of the x term, by 2 to get \frac{13}{20}. Then add the square of \frac{13}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\frac{13}{10}z+\frac{169}{400}=\frac{3}{10}+\frac{169}{400}
Square \frac{13}{20} by squaring both the numerator and the denominator of the fraction.
z^{2}+\frac{13}{10}z+\frac{169}{400}=\frac{289}{400}
Add \frac{3}{10} to \frac{169}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z+\frac{13}{20}\right)^{2}=\frac{289}{400}
Factor z^{2}+\frac{13}{10}z+\frac{169}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{13}{20}\right)^{2}}=\sqrt{\frac{289}{400}}
Take the square root of both sides of the equation.
z+\frac{13}{20}=\frac{17}{20} z+\frac{13}{20}=-\frac{17}{20}
Simplify.
z=\frac{1}{5} z=-\frac{3}{2}
Subtract \frac{13}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}