Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5y^{2}\times 4=31
Multiply y and y to get y^{2}.
20y^{2}=31
Multiply 5 and 4 to get 20.
y^{2}=\frac{31}{20}
Divide both sides by 20.
y=\frac{\sqrt{155}}{10} y=-\frac{\sqrt{155}}{10}
Take the square root of both sides of the equation.
5y^{2}\times 4=31
Multiply y and y to get y^{2}.
20y^{2}=31
Multiply 5 and 4 to get 20.
20y^{2}-31=0
Subtract 31 from both sides.
y=\frac{0±\sqrt{0^{2}-4\times 20\left(-31\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 20\left(-31\right)}}{2\times 20}
Square 0.
y=\frac{0±\sqrt{-80\left(-31\right)}}{2\times 20}
Multiply -4 times 20.
y=\frac{0±\sqrt{2480}}{2\times 20}
Multiply -80 times -31.
y=\frac{0±4\sqrt{155}}{2\times 20}
Take the square root of 2480.
y=\frac{0±4\sqrt{155}}{40}
Multiply 2 times 20.
y=\frac{\sqrt{155}}{10}
Now solve the equation y=\frac{0±4\sqrt{155}}{40} when ± is plus.
y=-\frac{\sqrt{155}}{10}
Now solve the equation y=\frac{0±4\sqrt{155}}{40} when ± is minus.
y=\frac{\sqrt{155}}{10} y=-\frac{\sqrt{155}}{10}
The equation is now solved.