Factor
\left(5y-2\right)\left(y+2\right)y^{2}
Evaluate
\left(5y-2\right)\left(y+2\right)y^{2}
Graph
Share
Copied to clipboard
y^{2}\left(5y^{2}+8y-4\right)
Factor out y^{2}.
a+b=8 ab=5\left(-4\right)=-20
Consider 5y^{2}+8y-4. Factor the expression by grouping. First, the expression needs to be rewritten as 5y^{2}+ay+by-4. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=-2 b=10
The solution is the pair that gives sum 8.
\left(5y^{2}-2y\right)+\left(10y-4\right)
Rewrite 5y^{2}+8y-4 as \left(5y^{2}-2y\right)+\left(10y-4\right).
y\left(5y-2\right)+2\left(5y-2\right)
Factor out y in the first and 2 in the second group.
\left(5y-2\right)\left(y+2\right)
Factor out common term 5y-2 by using distributive property.
y^{2}\left(5y-2\right)\left(y+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}