Factor
\left(y-4\right)\left(5y-24\right)
Evaluate
\left(y-4\right)\left(5y-24\right)
Graph
Share
Copied to clipboard
a+b=-44 ab=5\times 96=480
Factor the expression by grouping. First, the expression needs to be rewritten as 5y^{2}+ay+by+96. To find a and b, set up a system to be solved.
-1,-480 -2,-240 -3,-160 -4,-120 -5,-96 -6,-80 -8,-60 -10,-48 -12,-40 -15,-32 -16,-30 -20,-24
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 480.
-1-480=-481 -2-240=-242 -3-160=-163 -4-120=-124 -5-96=-101 -6-80=-86 -8-60=-68 -10-48=-58 -12-40=-52 -15-32=-47 -16-30=-46 -20-24=-44
Calculate the sum for each pair.
a=-24 b=-20
The solution is the pair that gives sum -44.
\left(5y^{2}-24y\right)+\left(-20y+96\right)
Rewrite 5y^{2}-44y+96 as \left(5y^{2}-24y\right)+\left(-20y+96\right).
y\left(5y-24\right)-4\left(5y-24\right)
Factor out y in the first and -4 in the second group.
\left(5y-24\right)\left(y-4\right)
Factor out common term 5y-24 by using distributive property.
5y^{2}-44y+96=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 5\times 96}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-44\right)±\sqrt{1936-4\times 5\times 96}}{2\times 5}
Square -44.
y=\frac{-\left(-44\right)±\sqrt{1936-20\times 96}}{2\times 5}
Multiply -4 times 5.
y=\frac{-\left(-44\right)±\sqrt{1936-1920}}{2\times 5}
Multiply -20 times 96.
y=\frac{-\left(-44\right)±\sqrt{16}}{2\times 5}
Add 1936 to -1920.
y=\frac{-\left(-44\right)±4}{2\times 5}
Take the square root of 16.
y=\frac{44±4}{2\times 5}
The opposite of -44 is 44.
y=\frac{44±4}{10}
Multiply 2 times 5.
y=\frac{48}{10}
Now solve the equation y=\frac{44±4}{10} when ± is plus. Add 44 to 4.
y=\frac{24}{5}
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
y=\frac{40}{10}
Now solve the equation y=\frac{44±4}{10} when ± is minus. Subtract 4 from 44.
y=4
Divide 40 by 10.
5y^{2}-44y+96=5\left(y-\frac{24}{5}\right)\left(y-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{24}{5} for x_{1} and 4 for x_{2}.
5y^{2}-44y+96=5\times \frac{5y-24}{5}\left(y-4\right)
Subtract \frac{24}{5} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5y^{2}-44y+96=\left(5y-24\right)\left(y-4\right)
Cancel out 5, the greatest common factor in 5 and 5.
x ^ 2 -\frac{44}{5}x +\frac{96}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = \frac{44}{5} rs = \frac{96}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{22}{5} - u s = \frac{22}{5} + u
Two numbers r and s sum up to \frac{44}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{44}{5} = \frac{22}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{22}{5} - u) (\frac{22}{5} + u) = \frac{96}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{96}{5}
\frac{484}{25} - u^2 = \frac{96}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{96}{5}-\frac{484}{25} = -\frac{4}{25}
Simplify the expression by subtracting \frac{484}{25} on both sides
u^2 = \frac{4}{25} u = \pm\sqrt{\frac{4}{25}} = \pm \frac{2}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{22}{5} - \frac{2}{5} = 4.000 s = \frac{22}{5} + \frac{2}{5} = 4.800
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}