Solve for y
y=\frac{2}{5}=0.4
y=3
Graph
Share
Copied to clipboard
5y^{2}-17y=-6
Subtract 17y from both sides.
5y^{2}-17y+6=0
Add 6 to both sides.
a+b=-17 ab=5\times 6=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5y^{2}+ay+by+6. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-15 b=-2
The solution is the pair that gives sum -17.
\left(5y^{2}-15y\right)+\left(-2y+6\right)
Rewrite 5y^{2}-17y+6 as \left(5y^{2}-15y\right)+\left(-2y+6\right).
5y\left(y-3\right)-2\left(y-3\right)
Factor out 5y in the first and -2 in the second group.
\left(y-3\right)\left(5y-2\right)
Factor out common term y-3 by using distributive property.
y=3 y=\frac{2}{5}
To find equation solutions, solve y-3=0 and 5y-2=0.
5y^{2}-17y=-6
Subtract 17y from both sides.
5y^{2}-17y+6=0
Add 6 to both sides.
y=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 5\times 6}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -17 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-17\right)±\sqrt{289-4\times 5\times 6}}{2\times 5}
Square -17.
y=\frac{-\left(-17\right)±\sqrt{289-20\times 6}}{2\times 5}
Multiply -4 times 5.
y=\frac{-\left(-17\right)±\sqrt{289-120}}{2\times 5}
Multiply -20 times 6.
y=\frac{-\left(-17\right)±\sqrt{169}}{2\times 5}
Add 289 to -120.
y=\frac{-\left(-17\right)±13}{2\times 5}
Take the square root of 169.
y=\frac{17±13}{2\times 5}
The opposite of -17 is 17.
y=\frac{17±13}{10}
Multiply 2 times 5.
y=\frac{30}{10}
Now solve the equation y=\frac{17±13}{10} when ± is plus. Add 17 to 13.
y=3
Divide 30 by 10.
y=\frac{4}{10}
Now solve the equation y=\frac{17±13}{10} when ± is minus. Subtract 13 from 17.
y=\frac{2}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
y=3 y=\frac{2}{5}
The equation is now solved.
5y^{2}-17y=-6
Subtract 17y from both sides.
\frac{5y^{2}-17y}{5}=-\frac{6}{5}
Divide both sides by 5.
y^{2}-\frac{17}{5}y=-\frac{6}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}-\frac{17}{5}y+\left(-\frac{17}{10}\right)^{2}=-\frac{6}{5}+\left(-\frac{17}{10}\right)^{2}
Divide -\frac{17}{5}, the coefficient of the x term, by 2 to get -\frac{17}{10}. Then add the square of -\frac{17}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{17}{5}y+\frac{289}{100}=-\frac{6}{5}+\frac{289}{100}
Square -\frac{17}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{17}{5}y+\frac{289}{100}=\frac{169}{100}
Add -\frac{6}{5} to \frac{289}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{17}{10}\right)^{2}=\frac{169}{100}
Factor y^{2}-\frac{17}{5}y+\frac{289}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{17}{10}\right)^{2}}=\sqrt{\frac{169}{100}}
Take the square root of both sides of the equation.
y-\frac{17}{10}=\frac{13}{10} y-\frac{17}{10}=-\frac{13}{10}
Simplify.
y=3 y=\frac{2}{5}
Add \frac{17}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}