Factor
\left(y+5\right)\left(5y+2\right)
Evaluate
\left(y+5\right)\left(5y+2\right)
Graph
Share
Copied to clipboard
a+b=27 ab=5\times 10=50
Factor the expression by grouping. First, the expression needs to be rewritten as 5y^{2}+ay+by+10. To find a and b, set up a system to be solved.
1,50 2,25 5,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 50.
1+50=51 2+25=27 5+10=15
Calculate the sum for each pair.
a=2 b=25
The solution is the pair that gives sum 27.
\left(5y^{2}+2y\right)+\left(25y+10\right)
Rewrite 5y^{2}+27y+10 as \left(5y^{2}+2y\right)+\left(25y+10\right).
y\left(5y+2\right)+5\left(5y+2\right)
Factor out y in the first and 5 in the second group.
\left(5y+2\right)\left(y+5\right)
Factor out common term 5y+2 by using distributive property.
5y^{2}+27y+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-27±\sqrt{27^{2}-4\times 5\times 10}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-27±\sqrt{729-4\times 5\times 10}}{2\times 5}
Square 27.
y=\frac{-27±\sqrt{729-20\times 10}}{2\times 5}
Multiply -4 times 5.
y=\frac{-27±\sqrt{729-200}}{2\times 5}
Multiply -20 times 10.
y=\frac{-27±\sqrt{529}}{2\times 5}
Add 729 to -200.
y=\frac{-27±23}{2\times 5}
Take the square root of 529.
y=\frac{-27±23}{10}
Multiply 2 times 5.
y=-\frac{4}{10}
Now solve the equation y=\frac{-27±23}{10} when ± is plus. Add -27 to 23.
y=-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
y=-\frac{50}{10}
Now solve the equation y=\frac{-27±23}{10} when ± is minus. Subtract 23 from -27.
y=-5
Divide -50 by 10.
5y^{2}+27y+10=5\left(y-\left(-\frac{2}{5}\right)\right)\left(y-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{5} for x_{1} and -5 for x_{2}.
5y^{2}+27y+10=5\left(y+\frac{2}{5}\right)\left(y+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5y^{2}+27y+10=5\times \frac{5y+2}{5}\left(y+5\right)
Add \frac{2}{5} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5y^{2}+27y+10=\left(5y+2\right)\left(y+5\right)
Cancel out 5, the greatest common factor in 5 and 5.
x ^ 2 +\frac{27}{5}x +2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = -\frac{27}{5} rs = 2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{27}{10} - u s = -\frac{27}{10} + u
Two numbers r and s sum up to -\frac{27}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{27}{5} = -\frac{27}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{27}{10} - u) (-\frac{27}{10} + u) = 2
To solve for unknown quantity u, substitute these in the product equation rs = 2
\frac{729}{100} - u^2 = 2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 2-\frac{729}{100} = -\frac{529}{100}
Simplify the expression by subtracting \frac{729}{100} on both sides
u^2 = \frac{529}{100} u = \pm\sqrt{\frac{529}{100}} = \pm \frac{23}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{27}{10} - \frac{23}{10} = -5 s = -\frac{27}{10} + \frac{23}{10} = -0.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}