Solve for y
y=\frac{\sqrt{1801}-59}{70}\approx -0.236597281
y=\frac{-\sqrt{1801}-59}{70}\approx -1.449117005
Graph
Quiz
Quadratic Equation
5 problems similar to:
5 y + 9 y ^ { 2 } - 4 y ^ { 2 } + 6 ( 5 y + 9 ) y = - 12
Share
Copied to clipboard
5y+5y^{2}+6\left(5y+9\right)y=-12
Combine 9y^{2} and -4y^{2} to get 5y^{2}.
5y+5y^{2}+\left(30y+54\right)y=-12
Use the distributive property to multiply 6 by 5y+9.
5y+5y^{2}+30y^{2}+54y=-12
Use the distributive property to multiply 30y+54 by y.
5y+35y^{2}+54y=-12
Combine 5y^{2} and 30y^{2} to get 35y^{2}.
59y+35y^{2}=-12
Combine 5y and 54y to get 59y.
59y+35y^{2}+12=0
Add 12 to both sides.
35y^{2}+59y+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-59±\sqrt{59^{2}-4\times 35\times 12}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, 59 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-59±\sqrt{3481-4\times 35\times 12}}{2\times 35}
Square 59.
y=\frac{-59±\sqrt{3481-140\times 12}}{2\times 35}
Multiply -4 times 35.
y=\frac{-59±\sqrt{3481-1680}}{2\times 35}
Multiply -140 times 12.
y=\frac{-59±\sqrt{1801}}{2\times 35}
Add 3481 to -1680.
y=\frac{-59±\sqrt{1801}}{70}
Multiply 2 times 35.
y=\frac{\sqrt{1801}-59}{70}
Now solve the equation y=\frac{-59±\sqrt{1801}}{70} when ± is plus. Add -59 to \sqrt{1801}.
y=\frac{-\sqrt{1801}-59}{70}
Now solve the equation y=\frac{-59±\sqrt{1801}}{70} when ± is minus. Subtract \sqrt{1801} from -59.
y=\frac{\sqrt{1801}-59}{70} y=\frac{-\sqrt{1801}-59}{70}
The equation is now solved.
5y+5y^{2}+6\left(5y+9\right)y=-12
Combine 9y^{2} and -4y^{2} to get 5y^{2}.
5y+5y^{2}+\left(30y+54\right)y=-12
Use the distributive property to multiply 6 by 5y+9.
5y+5y^{2}+30y^{2}+54y=-12
Use the distributive property to multiply 30y+54 by y.
5y+35y^{2}+54y=-12
Combine 5y^{2} and 30y^{2} to get 35y^{2}.
59y+35y^{2}=-12
Combine 5y and 54y to get 59y.
35y^{2}+59y=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{35y^{2}+59y}{35}=-\frac{12}{35}
Divide both sides by 35.
y^{2}+\frac{59}{35}y=-\frac{12}{35}
Dividing by 35 undoes the multiplication by 35.
y^{2}+\frac{59}{35}y+\left(\frac{59}{70}\right)^{2}=-\frac{12}{35}+\left(\frac{59}{70}\right)^{2}
Divide \frac{59}{35}, the coefficient of the x term, by 2 to get \frac{59}{70}. Then add the square of \frac{59}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{59}{35}y+\frac{3481}{4900}=-\frac{12}{35}+\frac{3481}{4900}
Square \frac{59}{70} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{59}{35}y+\frac{3481}{4900}=\frac{1801}{4900}
Add -\frac{12}{35} to \frac{3481}{4900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{59}{70}\right)^{2}=\frac{1801}{4900}
Factor y^{2}+\frac{59}{35}y+\frac{3481}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{59}{70}\right)^{2}}=\sqrt{\frac{1801}{4900}}
Take the square root of both sides of the equation.
y+\frac{59}{70}=\frac{\sqrt{1801}}{70} y+\frac{59}{70}=-\frac{\sqrt{1801}}{70}
Simplify.
y=\frac{\sqrt{1801}-59}{70} y=\frac{-\sqrt{1801}-59}{70}
Subtract \frac{59}{70} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}