Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(y+4y^{2}\right)
Factor out 5.
y\left(1+4y\right)
Consider y+4y^{2}. Factor out y.
5y\left(4y+1\right)
Rewrite the complete factored expression.
20y^{2}+5y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-5±5}{2\times 20}
Take the square root of 5^{2}.
y=\frac{-5±5}{40}
Multiply 2 times 20.
y=\frac{0}{40}
Now solve the equation y=\frac{-5±5}{40} when ± is plus. Add -5 to 5.
y=0
Divide 0 by 40.
y=-\frac{10}{40}
Now solve the equation y=\frac{-5±5}{40} when ± is minus. Subtract 5 from -5.
y=-\frac{1}{4}
Reduce the fraction \frac{-10}{40} to lowest terms by extracting and canceling out 10.
20y^{2}+5y=20y\left(y-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{4} for x_{2}.
20y^{2}+5y=20y\left(y+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20y^{2}+5y=20y\times \frac{4y+1}{4}
Add \frac{1}{4} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20y^{2}+5y=5y\left(4y+1\right)
Cancel out 4, the greatest common factor in 20 and 4.