Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5y+10=y^{2}-10
Multiply y and y to get y^{2}.
5y+10-y^{2}=-10
Subtract y^{2} from both sides.
5y+10-y^{2}+10=0
Add 10 to both sides.
5y+20-y^{2}=0
Add 10 and 10 to get 20.
-y^{2}+5y+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 20}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-1\right)\times 20}}{2\left(-1\right)}
Square 5.
y=\frac{-5±\sqrt{25+4\times 20}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-5±\sqrt{25+80}}{2\left(-1\right)}
Multiply 4 times 20.
y=\frac{-5±\sqrt{105}}{2\left(-1\right)}
Add 25 to 80.
y=\frac{-5±\sqrt{105}}{-2}
Multiply 2 times -1.
y=\frac{\sqrt{105}-5}{-2}
Now solve the equation y=\frac{-5±\sqrt{105}}{-2} when ± is plus. Add -5 to \sqrt{105}.
y=\frac{5-\sqrt{105}}{2}
Divide -5+\sqrt{105} by -2.
y=\frac{-\sqrt{105}-5}{-2}
Now solve the equation y=\frac{-5±\sqrt{105}}{-2} when ± is minus. Subtract \sqrt{105} from -5.
y=\frac{\sqrt{105}+5}{2}
Divide -5-\sqrt{105} by -2.
y=\frac{5-\sqrt{105}}{2} y=\frac{\sqrt{105}+5}{2}
The equation is now solved.
5y+10=y^{2}-10
Multiply y and y to get y^{2}.
5y+10-y^{2}=-10
Subtract y^{2} from both sides.
5y-y^{2}=-10-10
Subtract 10 from both sides.
5y-y^{2}=-20
Subtract 10 from -10 to get -20.
-y^{2}+5y=-20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-y^{2}+5y}{-1}=-\frac{20}{-1}
Divide both sides by -1.
y^{2}+\frac{5}{-1}y=-\frac{20}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-5y=-\frac{20}{-1}
Divide 5 by -1.
y^{2}-5y=20
Divide -20 by -1.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=20+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-5y+\frac{25}{4}=20+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-5y+\frac{25}{4}=\frac{105}{4}
Add 20 to \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{105}{4}
Factor y^{2}-5y+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{105}{4}}
Take the square root of both sides of the equation.
y-\frac{5}{2}=\frac{\sqrt{105}}{2} y-\frac{5}{2}=-\frac{\sqrt{105}}{2}
Simplify.
y=\frac{\sqrt{105}+5}{2} y=\frac{5-\sqrt{105}}{2}
Add \frac{5}{2} to both sides of the equation.