Solve for a
a=\frac{5x-7}{2x+1}
x\neq -\frac{1}{2}
Solve for x
x=\frac{a+7}{5-2a}
a\neq \frac{5}{2}
Graph
Share
Copied to clipboard
5x-a-2ax=7
Subtract 2ax from both sides.
-a-2ax=7-5x
Subtract 5x from both sides.
\left(-1-2x\right)a=7-5x
Combine all terms containing a.
\left(-2x-1\right)a=7-5x
The equation is in standard form.
\frac{\left(-2x-1\right)a}{-2x-1}=\frac{7-5x}{-2x-1}
Divide both sides by -2x-1.
a=\frac{7-5x}{-2x-1}
Dividing by -2x-1 undoes the multiplication by -2x-1.
a=-\frac{7-5x}{2x+1}
Divide 7-5x by -2x-1.
5x-a-2ax=7
Subtract 2ax from both sides.
5x-2ax=7+a
Add a to both sides.
\left(5-2a\right)x=7+a
Combine all terms containing x.
\left(5-2a\right)x=a+7
The equation is in standard form.
\frac{\left(5-2a\right)x}{5-2a}=\frac{a+7}{5-2a}
Divide both sides by 5-2a.
x=\frac{a+7}{5-2a}
Dividing by 5-2a undoes the multiplication by 5-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}