Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-4-10x^{2}=0
Subtract 10x^{2} from both sides.
-10x^{2}+5x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-10\right)\left(-4\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 5 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-10\right)\left(-4\right)}}{2\left(-10\right)}
Square 5.
x=\frac{-5±\sqrt{25+40\left(-4\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-5±\sqrt{25-160}}{2\left(-10\right)}
Multiply 40 times -4.
x=\frac{-5±\sqrt{-135}}{2\left(-10\right)}
Add 25 to -160.
x=\frac{-5±3\sqrt{15}i}{2\left(-10\right)}
Take the square root of -135.
x=\frac{-5±3\sqrt{15}i}{-20}
Multiply 2 times -10.
x=\frac{-5+3\sqrt{15}i}{-20}
Now solve the equation x=\frac{-5±3\sqrt{15}i}{-20} when ± is plus. Add -5 to 3i\sqrt{15}.
x=-\frac{3\sqrt{15}i}{20}+\frac{1}{4}
Divide -5+3i\sqrt{15} by -20.
x=\frac{-3\sqrt{15}i-5}{-20}
Now solve the equation x=\frac{-5±3\sqrt{15}i}{-20} when ± is minus. Subtract 3i\sqrt{15} from -5.
x=\frac{3\sqrt{15}i}{20}+\frac{1}{4}
Divide -5-3i\sqrt{15} by -20.
x=-\frac{3\sqrt{15}i}{20}+\frac{1}{4} x=\frac{3\sqrt{15}i}{20}+\frac{1}{4}
The equation is now solved.
5x-4-10x^{2}=0
Subtract 10x^{2} from both sides.
5x-10x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
-10x^{2}+5x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+5x}{-10}=\frac{4}{-10}
Divide both sides by -10.
x^{2}+\frac{5}{-10}x=\frac{4}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{1}{2}x=\frac{4}{-10}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{2}x=-\frac{2}{5}
Reduce the fraction \frac{4}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{2}{5}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{2}{5}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{27}{80}
Add -\frac{2}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{27}{80}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{27}{80}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3\sqrt{15}i}{20} x-\frac{1}{4}=-\frac{3\sqrt{15}i}{20}
Simplify.
x=\frac{3\sqrt{15}i}{20}+\frac{1}{4} x=-\frac{3\sqrt{15}i}{20}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.