Solve for x
x\leq \frac{49}{24}
Graph
Share
Copied to clipboard
5x-3\left(5x-3\right)\geq 2\left(3x-20+4x\right)
Combine 3x and 2x to get 5x.
5x-15x+9\geq 2\left(3x-20+4x\right)
Use the distributive property to multiply -3 by 5x-3.
-10x+9\geq 2\left(3x-20+4x\right)
Combine 5x and -15x to get -10x.
-10x+9\geq 2\left(7x-20\right)
Combine 3x and 4x to get 7x.
-10x+9\geq 14x-40
Use the distributive property to multiply 2 by 7x-20.
-10x+9-14x\geq -40
Subtract 14x from both sides.
-24x+9\geq -40
Combine -10x and -14x to get -24x.
-24x\geq -40-9
Subtract 9 from both sides.
-24x\geq -49
Subtract 9 from -40 to get -49.
x\leq \frac{-49}{-24}
Divide both sides by -24. Since -24 is negative, the inequality direction is changed.
x\leq \frac{49}{24}
Fraction \frac{-49}{-24} can be simplified to \frac{49}{24} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}