Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-2x^{2}-2=0
Subtract 2 from both sides.
-2x^{2}+5x-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=-2\left(-2\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-2x^{2}+4x\right)+\left(x-2\right)
Rewrite -2x^{2}+5x-2 as \left(-2x^{2}+4x\right)+\left(x-2\right).
2x\left(-x+2\right)-\left(-x+2\right)
Factor out 2x in the first and -1 in the second group.
\left(-x+2\right)\left(2x-1\right)
Factor out common term -x+2 by using distributive property.
x=2 x=\frac{1}{2}
To find equation solutions, solve -x+2=0 and 2x-1=0.
-2x^{2}+5x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+5x-2=2-2
Subtract 2 from both sides of the equation.
-2x^{2}+5x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-5±\sqrt{5^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square 5.
x=\frac{-5±\sqrt{25+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-5±\sqrt{25-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-5±\sqrt{9}}{2\left(-2\right)}
Add 25 to -16.
x=\frac{-5±3}{2\left(-2\right)}
Take the square root of 9.
x=\frac{-5±3}{-4}
Multiply 2 times -2.
x=-\frac{2}{-4}
Now solve the equation x=\frac{-5±3}{-4} when ± is plus. Add -5 to 3.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{8}{-4}
Now solve the equation x=\frac{-5±3}{-4} when ± is minus. Subtract 3 from -5.
x=2
Divide -8 by -4.
x=\frac{1}{2} x=2
The equation is now solved.
-2x^{2}+5x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+5x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\frac{5}{-2}x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{5}{2}x=\frac{2}{-2}
Divide 5 by -2.
x^{2}-\frac{5}{2}x=-1
Divide 2 by -2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-1+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{9}{16}
Add -1 to \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{3}{4} x-\frac{5}{4}=-\frac{3}{4}
Simplify.
x=2 x=\frac{1}{2}
Add \frac{5}{4} to both sides of the equation.