Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x-10-x^{2}-5
Combine 5x and 10x to get 15x.
15x-15-x^{2}
Subtract 5 from -10 to get -15.
factor(15x-10-x^{2}-5)
Combine 5x and 10x to get 15x.
factor(15x-15-x^{2})
Subtract 5 from -10 to get -15.
-x^{2}+15x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{225-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Square 15.
x=\frac{-15±\sqrt{225+4\left(-15\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-15±\sqrt{225-60}}{2\left(-1\right)}
Multiply 4 times -15.
x=\frac{-15±\sqrt{165}}{2\left(-1\right)}
Add 225 to -60.
x=\frac{-15±\sqrt{165}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{165}-15}{-2}
Now solve the equation x=\frac{-15±\sqrt{165}}{-2} when ± is plus. Add -15 to \sqrt{165}.
x=\frac{15-\sqrt{165}}{2}
Divide -15+\sqrt{165} by -2.
x=\frac{-\sqrt{165}-15}{-2}
Now solve the equation x=\frac{-15±\sqrt{165}}{-2} when ± is minus. Subtract \sqrt{165} from -15.
x=\frac{\sqrt{165}+15}{2}
Divide -15-\sqrt{165} by -2.
-x^{2}+15x-15=-\left(x-\frac{15-\sqrt{165}}{2}\right)\left(x-\frac{\sqrt{165}+15}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15-\sqrt{165}}{2} for x_{1} and \frac{15+\sqrt{165}}{2} for x_{2}.