Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
30x-6\left(\frac{2x}{3}+\frac{x}{2}\right)=2\left(9x-\frac{1}{2}\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
30x-6\left(\frac{2\times 2x}{6}+\frac{3x}{6}\right)=2\left(9x-\frac{1}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2x}{3} times \frac{2}{2}. Multiply \frac{x}{2} times \frac{3}{3}.
30x-6\times \frac{2\times 2x+3x}{6}=2\left(9x-\frac{1}{2}\right)
Since \frac{2\times 2x}{6} and \frac{3x}{6} have the same denominator, add them by adding their numerators.
30x-6\times \frac{4x+3x}{6}=2\left(9x-\frac{1}{2}\right)
Do the multiplications in 2\times 2x+3x.
30x-6\times \frac{7x}{6}=2\left(9x-\frac{1}{2}\right)
Combine like terms in 4x+3x.
30x-\frac{6\times 7x}{6}=2\left(9x-\frac{1}{2}\right)
Express 6\times \frac{7x}{6} as a single fraction.
30x-7x=2\left(9x-\frac{1}{2}\right)
Cancel out 6 and 6.
23x=2\left(9x-\frac{1}{2}\right)
Combine 30x and -7x to get 23x.
23x=18x+2\left(-\frac{1}{2}\right)
Use the distributive property to multiply 2 by 9x-\frac{1}{2}.
23x=18x-1
Cancel out 2 and 2.
23x-18x=-1
Subtract 18x from both sides.
5x=-1
Combine 23x and -18x to get 5x.
x=\frac{-1}{5}
Divide both sides by 5.
x=-\frac{1}{5}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}