Solve for x
x=\frac{11}{60}+\frac{2}{5y}
y\neq 0
Solve for y
y=-\frac{24}{11-60x}
x\neq \frac{11}{60}
Graph
Share
Copied to clipboard
5x\times 12y-12\times 2=11y
Multiply both sides of the equation by 12y, the least common multiple of y,12.
60xy-12\times 2=11y
Multiply 5 and 12 to get 60.
60xy-24=11y
Multiply -12 and 2 to get -24.
60xy=11y+24
Add 24 to both sides.
60yx=11y+24
The equation is in standard form.
\frac{60yx}{60y}=\frac{11y+24}{60y}
Divide both sides by 60y.
x=\frac{11y+24}{60y}
Dividing by 60y undoes the multiplication by 60y.
x=\frac{11}{60}+\frac{2}{5y}
Divide 11y+24 by 60y.
5x\times 12y-12\times 2=11y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of y,12.
60xy-12\times 2=11y
Multiply 5 and 12 to get 60.
60xy-24=11y
Multiply -12 and 2 to get -24.
60xy-24-11y=0
Subtract 11y from both sides.
60xy-11y=24
Add 24 to both sides. Anything plus zero gives itself.
\left(60x-11\right)y=24
Combine all terms containing y.
\frac{\left(60x-11\right)y}{60x-11}=\frac{24}{60x-11}
Divide both sides by 60x-11.
y=\frac{24}{60x-11}
Dividing by 60x-11 undoes the multiplication by 60x-11.
y=\frac{24}{60x-11}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}