Solve for x
x>\frac{37}{17}
Graph
Share
Copied to clipboard
3\left(5x-\frac{1}{3}\right)-3\left(12-\frac{2x}{3}\right)>0
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
15x+3\left(-\frac{1}{3}\right)-3\left(12-\frac{2x}{3}\right)>0
Use the distributive property to multiply 3 by 5x-\frac{1}{3}.
15x-1-3\left(12-\frac{2x}{3}\right)>0
Cancel out 3 and 3.
3\left(15x-1\right)-9\left(12-\frac{2x}{3}\right)>0
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
9\left(15x-1\right)-3\times 9\left(12-\frac{2x}{3}\right)>0
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
135x-9-3\times 9\left(12-\frac{2x}{3}\right)>0
Use the distributive property to multiply 9 by 15x-1.
135x-9-27\left(12-\frac{2x}{3}\right)>0
Multiply -3 and 9 to get -27.
135x-9-324+27\times \frac{2x}{3}>0
Use the distributive property to multiply -27 by 12-\frac{2x}{3}.
135x-9-324+9\times 2x>0
Cancel out 3, the greatest common factor in 27 and 3.
135x-9-324+18x>0
Multiply 9 and 2 to get 18.
135x-333+18x>0
Subtract 324 from -9 to get -333.
153x-333>0
Combine 135x and 18x to get 153x.
153x>333
Add 333 to both sides. Anything plus zero gives itself.
x>\frac{333}{153}
Divide both sides by 153. Since 153 is positive, the inequality direction remains the same.
x>\frac{37}{17}
Reduce the fraction \frac{333}{153} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}