Evaluate
y\left(y-9x\right)
Expand
y^{2}-9xy
Share
Copied to clipboard
5x^{2}-5xy-\left(x+y\right)\left(5x-y\right)
Use the distributive property to multiply 5x by x-y.
5x^{2}-5xy-\left(5x^{2}-xy+5yx-y^{2}\right)
Apply the distributive property by multiplying each term of x+y by each term of 5x-y.
5x^{2}-5xy-\left(5x^{2}+4xy-y^{2}\right)
Combine -xy and 5yx to get 4xy.
5x^{2}-5xy-5x^{2}-4xy-\left(-y^{2}\right)
To find the opposite of 5x^{2}+4xy-y^{2}, find the opposite of each term.
5x^{2}-5xy-5x^{2}-4xy+y^{2}
The opposite of -y^{2} is y^{2}.
-5xy-4xy+y^{2}
Combine 5x^{2} and -5x^{2} to get 0.
-9xy+y^{2}
Combine -5xy and -4xy to get -9xy.
5x^{2}-5xy-\left(x+y\right)\left(5x-y\right)
Use the distributive property to multiply 5x by x-y.
5x^{2}-5xy-\left(5x^{2}-xy+5yx-y^{2}\right)
Apply the distributive property by multiplying each term of x+y by each term of 5x-y.
5x^{2}-5xy-\left(5x^{2}+4xy-y^{2}\right)
Combine -xy and 5yx to get 4xy.
5x^{2}-5xy-5x^{2}-4xy-\left(-y^{2}\right)
To find the opposite of 5x^{2}+4xy-y^{2}, find the opposite of each term.
5x^{2}-5xy-5x^{2}-4xy+y^{2}
The opposite of -y^{2} is y^{2}.
-5xy-4xy+y^{2}
Combine 5x^{2} and -5x^{2} to get 0.
-9xy+y^{2}
Combine -5xy and -4xy to get -9xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}