Solve for x
x=\frac{1}{3}\approx 0.333333333
x=4
Graph
Share
Copied to clipboard
5x^{2}-20x=\left(2x+1\right)\left(x-4\right)
Use the distributive property to multiply 5x by x-4.
5x^{2}-20x=2x^{2}-7x-4
Use the distributive property to multiply 2x+1 by x-4 and combine like terms.
5x^{2}-20x-2x^{2}=-7x-4
Subtract 2x^{2} from both sides.
3x^{2}-20x=-7x-4
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}-20x+7x=-4
Add 7x to both sides.
3x^{2}-13x=-4
Combine -20x and 7x to get -13x.
3x^{2}-13x+4=0
Add 4 to both sides.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -13 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 3\times 4}}{2\times 3}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-12\times 4}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-13\right)±\sqrt{169-48}}{2\times 3}
Multiply -12 times 4.
x=\frac{-\left(-13\right)±\sqrt{121}}{2\times 3}
Add 169 to -48.
x=\frac{-\left(-13\right)±11}{2\times 3}
Take the square root of 121.
x=\frac{13±11}{2\times 3}
The opposite of -13 is 13.
x=\frac{13±11}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{13±11}{6} when ± is plus. Add 13 to 11.
x=4
Divide 24 by 6.
x=\frac{2}{6}
Now solve the equation x=\frac{13±11}{6} when ± is minus. Subtract 11 from 13.
x=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{1}{3}
The equation is now solved.
5x^{2}-20x=\left(2x+1\right)\left(x-4\right)
Use the distributive property to multiply 5x by x-4.
5x^{2}-20x=2x^{2}-7x-4
Use the distributive property to multiply 2x+1 by x-4 and combine like terms.
5x^{2}-20x-2x^{2}=-7x-4
Subtract 2x^{2} from both sides.
3x^{2}-20x=-7x-4
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}-20x+7x=-4
Add 7x to both sides.
3x^{2}-13x=-4
Combine -20x and 7x to get -13x.
\frac{3x^{2}-13x}{3}=-\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{13}{3}x=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{13}{6}\right)^{2}
Divide -\frac{13}{3}, the coefficient of the x term, by 2 to get -\frac{13}{6}. Then add the square of -\frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{4}{3}+\frac{169}{36}
Square -\frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{3}x+\frac{169}{36}=\frac{121}{36}
Add -\frac{4}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{6}\right)^{2}=\frac{121}{36}
Factor x^{2}-\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Take the square root of both sides of the equation.
x-\frac{13}{6}=\frac{11}{6} x-\frac{13}{6}=-\frac{11}{6}
Simplify.
x=4 x=\frac{1}{3}
Add \frac{13}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}