Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{5x}{x+1}\text{, }&x\neq -1\\h\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{5x}{x+1}\text{, }&x\neq -1\\h\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x=\frac{h}{5-h}\text{, }&h\neq 5\end{matrix}\right.
Graph
Share
Copied to clipboard
5x^{2}-5x=h\left(x^{2}-1\right)
Use the distributive property to multiply 5x by x-1.
5x^{2}-5x=hx^{2}-h
Use the distributive property to multiply h by x^{2}-1.
hx^{2}-h=5x^{2}-5x
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-1\right)h=5x^{2}-5x
Combine all terms containing h.
\frac{\left(x^{2}-1\right)h}{x^{2}-1}=\frac{5x\left(x-1\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
h=\frac{5x\left(x-1\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
h=\frac{5x}{x+1}
Divide 5x\left(-1+x\right) by x^{2}-1.
5x^{2}-5x=h\left(x^{2}-1\right)
Use the distributive property to multiply 5x by x-1.
5x^{2}-5x=hx^{2}-h
Use the distributive property to multiply h by x^{2}-1.
hx^{2}-h=5x^{2}-5x
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-1\right)h=5x^{2}-5x
Combine all terms containing h.
\frac{\left(x^{2}-1\right)h}{x^{2}-1}=\frac{5x\left(x-1\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
h=\frac{5x\left(x-1\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
h=\frac{5x}{x+1}
Divide 5x\left(-1+x\right) by x^{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}