Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+30x=-50
Use the distributive property to multiply 5x by x+6.
5x^{2}+30x+50=0
Add 50 to both sides.
x=\frac{-30±\sqrt{30^{2}-4\times 5\times 50}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 30 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 5\times 50}}{2\times 5}
Square 30.
x=\frac{-30±\sqrt{900-20\times 50}}{2\times 5}
Multiply -4 times 5.
x=\frac{-30±\sqrt{900-1000}}{2\times 5}
Multiply -20 times 50.
x=\frac{-30±\sqrt{-100}}{2\times 5}
Add 900 to -1000.
x=\frac{-30±10i}{2\times 5}
Take the square root of -100.
x=\frac{-30±10i}{10}
Multiply 2 times 5.
x=\frac{-30+10i}{10}
Now solve the equation x=\frac{-30±10i}{10} when ± is plus. Add -30 to 10i.
x=-3+i
Divide -30+10i by 10.
x=\frac{-30-10i}{10}
Now solve the equation x=\frac{-30±10i}{10} when ± is minus. Subtract 10i from -30.
x=-3-i
Divide -30-10i by 10.
x=-3+i x=-3-i
The equation is now solved.
5x^{2}+30x=-50
Use the distributive property to multiply 5x by x+6.
\frac{5x^{2}+30x}{5}=-\frac{50}{5}
Divide both sides by 5.
x^{2}+\frac{30}{5}x=-\frac{50}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+6x=-\frac{50}{5}
Divide 30 by 5.
x^{2}+6x=-10
Divide -50 by 5.
x^{2}+6x+3^{2}=-10+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-10+9
Square 3.
x^{2}+6x+9=-1
Add -10 to 9.
\left(x+3\right)^{2}=-1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x+3=i x+3=-i
Simplify.
x=-3+i x=-3-i
Subtract 3 from both sides of the equation.